Jianming Bian

Picture of Jianming Bian
Professor, Physics & Astronomy
School of Physical Sciences
Ph.D., Institute of High Energy Physics, Chinese Academy of Sciences, 2009, Physics
B.S., Peking University, Physics
Phone: (949) 824-8389
Fax: (949) 824-8389
Email: bianjm@uci.edu
University of California, Irvine
4129 Frederick Reines Hall
Mail Code: 4575
Irvine, CA 92697
Research Interests
Neutrino Experiments
Research Abstract
I am a professor in the Department of Physics and Astronomy at University of California, Irvine. My primary research interests are in Intensity Frontier programs. Currently I am working on neutrino experiments NOvA, DUNE, FLArE and Super-Kamiokande.

NOvA is a long-baseline accelerator-based neutrino oscillation experiment that is optimized for electron neutrino measurements. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its Far Detector in Ash River, Minnesota. The NOvA experiment aims to resolve the neutrino mass hierarchy problem and to constrain the CP-violating phase.

DUNE is the next generation long-baseline experiment in the US which will decisively determine the mass hierarchy and CP violation. DUNE detectors are based on liquid argon time projection chamber (LArTPC) technology, which offers excellent spatial resolution, high neutrino detection efficiency and superb background rejection. DUNE’s prototype detectors protoDUNE-SP and protoDUNE-DP have been taking data at CERN since 2018 .

FLArE is a planed forward liquid argon experiment for high energy neutrino and dark matter searches at Large Hadron Collider at CERN. It will be located in the proposed Forward Physics Facility (FPF), 620 m from the ATLAS interaction point in the far-forward direction, and will collect data during the High-Luminosity LHC era from 2028-37.

Super-Kamiokande is the large water Cherenkov detector in Japan. Physics topics of the Super-Kamiokande experiment includes solar neutrinos, supernova neutrinos, atmospheric neutrinos, man-made neutrinos and proton decays.

Alongside simulation, data analysis, and hardware development in the aforementioned experiments, my group is committed to applying state-of-the-art deep learning technologies to neutrino experiments. We have pioneered the use of deep learning for neutrino kinematic reconstruction (e.g., particle energy, direction, vertex, etc.), Bayesian learning for neutrino oscillation parameter inference, and transformers (the foundation of ChatGPT) for neutrino flavor tagging and final-state particle identification.

I hold leadership roles in AI/ML for both the DUNE and NOvA experiments to coordinate AI/ML activities in these experiments, serving as the founding co-chair of the DUNE AI/ML Forum Committee and as convener of NOvA’s Reconstruction and Deep Learning group. In parallel, I serve as Team Leader of the purity monitoring system at DUNE, a critical detector subsystem ensuring liquid-argon quality for the experiment’s operation and physics program.


Current research topics in my group

(1) Neutrino oscillation analyses to solve for Mass Ordering and CP violation

(2) Neutrino-electron elastic scattering measurements to constrain neutrino fluxes

(3) Deep learning based neutrino reconstruction technology at DUNE and NOvA

(4) Statistical tools in neutrino data analysis

(5) R&D and fabrication of DUNE's liquid argon purity monitors

(6) Liquid argon recirculation and purification technologies

(7) Cold electronics for liquid argon time projection chamber detectors

(8) Detector design and simulation for the FLArE experiment

(9) Calibration and data analysis of DUNE's prototype protoDUNE at CERN.



In addition to physics students and postdoc, my group has several students from UCI computer science and statistics departments who are working on deep-learning algorithms and the statistical tools for neutrino reconstruction and analysis.
Before joining UCI, I was also deeply involved in the very topical search for exotic-hadron states and other studies of charm and charmonium physics in collider experiments. I have been the lead researcher for several important analyses with the BESIII experiment in Beijing, including being the primary author of the discovery of a new four-quark candidate Zc(3900)^0.


Selected Publications

[1] S. Abubakar et al. [NOvA], “Explanation of the seasonal variation of cosmic multiple muon events observed
with the NOvA Near Detector,” [arXiv:2508.04434 [hep-ex]], submitted to PRD
[2] S. Abubakar et al. [NOvA], “Search for Accelerator-Produced Sub-GeV Dark Matter with the NOvA Near
Detector,” [arXiv:2507.10754 [hep-ex]], submitted to PRL
[3] S. Abbaslu et al. [DUNE], “Spatial and Temporal Evaluations of the Liquid Argon Purity in ProtoDUNE-SP,”
[arXiv:2507.08586 [physics.ins-det]], accepted by JINST
[4] W. Wu, B. Jargowsky, Y. Xiao, A. Yankelevich, J. Bian, C. J. Lin, T. Prakash and D. Christian, “Lifetime study
of the ColdADC for the Deep Underground Neutrino Experiment,” [arXiv:2507.07086 [physics.ins-det]],
submitted to JINST
[5] E. E. Robles, A. Yankelevich, W. Wu, J. Bian and P. Baldi, “Particle hit clustering and identification us-
ing point set transformers in liquid argon time projection chambers,” JINST 20 (2025) no.07, P07030
doi:10.1088/1748-0221/20/07/P07030 [arXiv:2504.08182 [hep-ex]].
[6] M. Vicenzi et al. [FLArE], “Simulations and Performance Studies for the Forward Liquid Argon Experiment
(FLArE) at the Forward Physics Facility,” CERN-PBC-Notes-2025-006.
[7] A. Abed Abud et al. [DUNE], “European Contributions to Fermilab Accelerator Upgrades and Facilities for
the DUNE Experiment,” [arXiv:2503.23744 [physics.acc-ph]].
[8] A. Abed Abud et al. [DUNE], “DUNE Software and Computing Research and Development,”
[arXiv:2503.23743 [physics.data-an]], Submitted to the 2026 Update of the European Strategy for Parti-
cle Physics
[9] A. Abed Abud et al. [DUNE], “The DUNE Science Program,” [arXiv:2503.23291 [hep-ex]], submitted to the
2026 Update of the European Strategy for Particle Physics
[10] A. Abed Abud et al. [DUNE], “The DUNE Phase II Detectors,” [arXiv:2503.23293 [physics.ins-det]], submit-
ted to the 2026 Update of the European Strategy for Particle Physics
[11] L. A. Anchordoqui et al. [FPF Working Groups], “The Forward Physics Facility at the Large Hadron Collider,”
[arXiv:2503.19010 [hep-ex]], submitted to the 2026 Update of the European Strategy for Particle Physics
[12] A. A. Abud et al. [DUNE], “Neutrino interaction vertex reconstruction in DUNE with Pandora deep learning,”
Eur. Phys. J. C 85 (2025) no.697, 697 doi:10.1140/epjc/s10052-025-14313-8 [arXiv:2502.06637 [hep-ex]].
[13] J. Adhikary, L. A. Anchordoqui, A. Ariga, T. Ariga, A. J. Barr, B. Batell, J. Bian, J. Boyd, M. Citron and
A. De Roeck, et al. “Scientific program for the Forward Physics Facility,” Eur. Phys. J. C 85, no.4, 430 (2025)
doi:10.1140/epjc/s10052-025-14048-6 [arXiv:2411.04175 [hep-ex]]
[14] M. A. Acero et al. [NOvA], “Measurement of the double-differential cross section of muon-neutrino charged-
current interactions with low hadronic energy in the NOvA Near Detector,” [arXiv:2410.10222 [hep-ex]].
[15] M. A. Acero et al. [NOvA], “Measurement of d2s/d|q?|dEavail in charged current ?µ-nucleus in-
teractions at =1.86 GeV using the NOvA Near Detector,” Phys. Rev. D 111 (2025) no.5, 052009
doi:10.1103/PhysRevD.111.052009 [arXiv:2410.05526 [hep-ex]].
[16] M. A. Acero et al. [NOvA], “Dual-Baseline Search for Active-to-Sterile Neutrino Oscillations in NOvA,” Phys.
Rev. Lett. 134 (2025) no.8, 081804 doi:10.1103/PhysRevLett.134.081804 [arXiv:2409.04553 [hep-ex]].
[17] A. Abed Abud et al. [DUNE], “DUNE Phase II: scientific opportunities, detector concepts, technological
solutions,” JINST 19 (2024) no.12, P12005 doi:10.1088/1748-0221/19/12/P12005 [arXiv:2408.12725
[physics.ins-det]].
[18] A. Abed Abud et al. [DUNE], “The track-length extension fitting algorithm for energy measurement of in-
teracting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data,” JINST 20 (2025)
no.02, P02021 doi:10.1088/1748-0221/20/02/P02021 [arXiv:2409.18288 [physics.ins-det]].
[19] A. Abed Abud et al. [DUNE], “First measurement of the total inelastic cross section of positively
charged kaons on argon at energies between 5.0 and 7.5 GeV,” Phys. Rev. D 110 (2024) no.9, 092011
doi:10.1103/PhysRevD.110.092011 [arXiv:2408.00582 [hep-ex]].
[20] A. Abed Abud et al. [DUNE], “Supernova pointing capabilities of DUNE,” Phys. Rev. D 111 (2025) no.9,
092006 doi:10.1103/PhysRevD.111.092006 [arXiv:2407.10339 [hep-ex]].
[21] M. A. Acero et al. [NOvA], “Search for CP-Violating Neutrino Nonstandard Interactions with the
NOvA Experiment,” Phys. Rev. Lett. 133 (2024) no.20, 201802 doi:10.1103/PhysRevLett.133.201802
[arXiv:2403.07266 [hep-ex]].

[22] A. Abed Abud et al. [DUNE], “Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Pro-
jection Chamber,” Instruments 8 (2024) no.3, 41 doi:10.3390/instruments8030041 [arXiv:2403.03212
[physics.ins-det]].
[23] A. Abed Abud et al. [DUNE], “Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintil-
lation light,” JINST 19 (2024) no.08, P08005 doi:10.1088/1748-0221/19/08/P08005 [arXiv:2402.01568
[physics.ins-det]].
[24] A. Abed Abud et al. [DUNE], “The DUNE Far Detector Vertical Drift Technology. Technical Design Report,”
JINST 19 (2024) no.08, T08004 doi:10.1088/1748-0221/19/08/T08004 [arXiv:2312.03130 [hep-ex]].
[25] M. A. Acero et al. [NOvA], “Expanding neutrino oscillation parameter measurements in NOvA us-
ing a Bayesian approach,” Phys. Rev. D 110 (2024) no.1, 1 doi:10.1103/PhysRevD.110.012005
[arXiv:2311.07835 [hep-ex]].
[26] Jianming Bian, “Comments on Prediction of Energy Resolution inthe JUNO Experiment", Invited
Cover Story, Chinese Physics C, Issue 1, 2025, https://cpc.ihep.ac.cn/news/Cover%20Story/
9743a941-fb03-42bd-aefe-b5e248bb77d5_en.htm
[27] J. K. Ahn et al. [KOTO and KOTO II], “Experimental Study of Rare Kaon Decays at J-PARC with KOTO and
KOTO II,” [arXiv:2505.02568 [hep-ex]].
[28] J. Fry et al. [KOTO], “Proposal of the KOTO II experiment,” [arXiv:2501.14827 [hep-ex]].
[29] M. A. Acero et al. [NOvA], “Measurement of ?µcharged-current inclusive p0 production in the NOvA near
detector,” Phys. Rev. D 107, no.11, 112008 (2023) doi:10.1103/PhysRevD.107.112008 [arXiv:2306.04028
[hep-ex]].
[30] A. Shmakov et al. [NOvA], “Interpretable Joint Event-Particle Reconstruction for Neutrino Physics at NOvA
with Sparse CNNs and Transformers,” [arXiv:2303.06201 [cs.LG]]. Conference paper submitted to Deep
Learning for Physical Sciences (DLPS) Workshop at the 2023 Conference on Neural Information Processing
Systems (NeurIPS 2023).
[31] A. Abed Abud et al. [DUNE], “Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP
detector,” Phys. Rev. D 107, no.9, 092012 (2023) doi:10.1103/PhysRevD.107.092012 [arXiv:2211.01166
[hep-ex]].
[32] S. Martynenko et al. [CAPTAIN], “Measurement of the neutron cross section on argon between 95 and
720 MeV,” Phys. Rev. D 107, no.7, 072009 (2023) doi:10.1103/PhysRevD.107.072009 [arXiv:2209.13488
[nucl-ex]].
[33] M. A. Acero et al. [NOvA], “Measurement of the double-differential muon-neutrino charged-current
inclusive cross section in the NOvA near detector,” Phys. Rev. D 107, no.5, 052011 (2023)
doi:10.1103/PhysRevD.107.052011 [arXiv:2109.12220 [hep-ex]].
[34] M. A. Acero et al. [NOvA], “Measurement of the ?e-Nucleus Charged-Current Double-Differential
Cross Section at = 2.4 GeV using NOvA,” Phys. Rev. Lett. 130, no.5, 051802 (2023)
doi:10.1103/PhysRevLett.130.051802 [arXiv:2206.10585 [hep-ex]].
[35] J. L. Feng, F. Kling, M. H. Reno, J. Rojo, D. Soldin, L. A. Anchordoqui, J. Boyd, A. Ismail, L. Harland-Lang
and K. J. Kelly, et al. “The Forward Physics Facility at the High-Luminosity LHC,” J. Phys. G 50, no.3, 030501
(2023) doi:10.1088/1361-6471/ac865e [arXiv:2203.05090 [hep-ex]].
[36] A. Abed Abud et al. [DUNE], “Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora,”
Eur. Phys. J. C 83, no.7, 618 (2023) doi:10.1140/epjc/s10052-023-11733-2 [arXiv:2206.14521 [hep-ex]].
[37] A. Abed Abud et al. [DUNE], “Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a
convolutional neural network,” Eur. Phys. J. C 82, no.10, 903 (2022) doi:10.1140/epjc/s10052-022-10791-
2 [arXiv:2203.17053 [physics.ins-det]].
[38] M. A. Acero et al. [NOvA], “Improved measurement of neutrino oscillation parameters by the NOvA ex-
periment,” Phys. Rev. D 106, no.3, 032004 (2022) doi:10.1103/PhysRevD.106.032004 [arXiv:2108.08219
[hep-ex]].
[39] A. Cabrera, Y. Han, M. Obolensky, F. Cavalier, J. Coelho, D. Navas-Nicolás, H. Nunokawa, L. Simard, J. Bian
and N. Nayak, et al. “Synergies and prospects for early resolution of the neutrino mass ordering,” Sci. Rep.
12, no.1, 5393 (2022) doi:10.1038/s41598-022-09111-1 [arXiv:2008.11280 [hep-ph]].
[40] A. A. Abud et al. [DUNE], “Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC,”
JINST 17, no.01, P01005 (2022) doi:10.1088/1748-0221/17/01/P01005 [arXiv:2108.01902 [physics.ins-det]].
[41] A. Abud Abed et al. [DUNE], “Low exposure long-baseline neutrino oscillation sensitivity of the DUNE ex-
periment,” Phys. Rev. D 105, no.7, 072006 (2022) doi:10.1103/PhysRevD.105.072006 [arXiv:2109.01304
[hep-ex]].
[42] M. A. Acero et al. [NOvA], “Extended search for supernovalike neutrinos in NOvA coincident with
LIGO/Virgo detections,” Phys. Rev. D 104, no.6, 063024 (2021) doi:10.1103/PhysRevD.104.063024
[arXiv:2106.06035 [hep-ex]].
[43] M. A. Acero et al. [NOvA], “Search for Active-Sterile Antineutrino Mixing Using Neutral-
Current Interactions with the NOvA Experiment,” Phys. Rev. Lett. 127, no.20, 201801 (2021)
doi:10.1103/PhysRevLett.127.201801 [arXiv:2106.04673 [hep-ex]].
[44] M. A. Acero et al. [NOvA], “Seasonal variation of multiple-muon cosmic ray air showers observed in the
NOvA detector on the surface,” Phys. Rev. D 104, no.1, 012014 (2021) doi:10.1103/PhysRevD.104.012014
[arXiv:2105.03848 [hep-ex]].
[45] M. A. Acero et al. [NOvA], “The Profiled Feldman-Cousins technique for confidence interval construction in
the presence of nuisance parameters,” [arXiv:2207.14353 [hep-ex]].
[46] A. Abed Abud et al. [DUNE], “Snowmass Neutrino Frontier: DUNE Physics Summary,” [arXiv:2203.06100
[hep-ex]].
[47] P. Ilten, N. Tran, P. Achenbach, A. Ariga, T. Ariga, M. Battaglieri, J. Bian, P. Bisio, A. Celentano and M. Citron,
et al. “Experiments and Facilities for Accelerator-Based Dark Sector Searches,” [arXiv:2206.04220 [hep-ex]].
[48] J. Bian et al. [Hyper-Kamiokande], “Hyper-Kamiokande Experiment: A Snowmass White Paper,”
[arXiv:2203.02029 [hep-ex]].
[49] C. E. Taylor et al. [CAPTAIN], “The Mini-CAPTAIN liquid argon time projection chamber,” Nucl. Instrum.
Meth. A 1001, 165131 (2021) doi:10.1016/j.nima.2021.165131 [arXiv:2008.11422 [physics.ins-det]].
[50] L. Li, N. Nayak, J. Bian and P. Baldi, “Efficient neutrino oscillation parameter inference using Gaussian
processes,” Phys. Rev. D 101, no.1, 012001 (2020) doi:10.1103/PhysRevD.101.012001 [arXiv:1811.07050
[physics.data-an]].
[51] B. Abi et al. [DUNE], “Long-baseline neutrino oscillation physics potential of the DUNE experiment,” Eur. Phys. J. C 80, no.10, 978 (2020) doi:10.1140/epjc/s10052-020-08456-z [arXiv:2006.16043 [hep-ex]].
[52] B. Abi et al. [DUNE], “First results on ProtoDUNE-SP liquid argon time projection chamber performance
from a beam test at the CERN Neutrino Platform,” JINST 15, no.12, P12004 (2020) doi:10.1088/1748-
0221/15/12/P12004 [arXiv:2007.06722 [physics.ins-det]].
[53] B. Abi et al. [DUNE], “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical De-
sign Report, Volume III: DUNE Far Detector Technical Coordination,” JINST 15, no.08, T08009 (2020)
doi:10.1088/1748-0221/15/08/T08009 [arXiv:2002.03008 [physics.ins-det]].
[70] B. Abi et al. [DUNE Collaboration], “The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase
Module,” Fermilab-Design-2018-03, arXiv:1807.10327 [physics.ins-det].
[71] M. Ablikim et al. [BESIII Collaboration], “Precision Study of ?'??p+p-Decay Dynamics,” Phys. Rev. Lett.120, no. 24, 242003 (2018) doi:10.1103/PhysRevLett.120.242003 [arXiv:1712.01525 [hep-ex]].
[72] P. Adamson et al. [NOvA Collaboration], “Constraints on Oscillation Parameters from ?e Appearance and ?µ
Disappearance in NOvA,” Phys. Rev. Lett. 118, no. 23, 231801 (2017) doi:10.1103/PhysRevLett.118.231801
[arXiv:1703.03328 [hep-ex]].
[73] P. Adamson et al. [NOvA Collaboration], “Measurement of the neutrino mixing angle ?23 in NOvA,” Phys.
Rev. Lett. 118, no. 15, 151802 (2017) doi:10.1103/PhysRevLett.118.151802 [arXiv:1701.05891 [hep-ex]].
[74] P. Adamson et al. [NOvA Collaboration], “Search for active-sterile neutrino mixing using neutral-current interactions in NOvA,” Phys. Rev. D 96 (2017) no.7, 072006 doi:10.1103/PhysRevD.96.072006
[arXiv:1706.04592 [hep-ex]].
[75] J. Bian, “Measurement of Neutrino-Electron Elastic Scattering at NOvA Near Detector,” Proceedings of DPF2017, arXiv:1710.03428 [hep-ex].
[76] B. Wang, J. Bian, T. E. Coan, S. Kotelnikov, H. Duyang, A. Hatzikoutelis [NOvA Collaboration], “Muon Neutrino on Electron Elastic Scattering in the NOvA Near Detector and its Applications Beyond the Standard
Model,” J. Phys. Conf. Ser. 888, no. 1, 012123 (2017). doi:10.1088/1742-6596/888/1/012123
[77] B. Abi et al. [DUNE Collaboration], “The Single-Phase ProtoDUNE Technical Design Report,” arXiv:1706.07081 [physics.ins-det].
[78] J. Bian, “Recent Results of Electron-Neutrino Appearance Measurement at NOvA,” Proceedings of
ICHEP2016, PoS ICHEP 2016, 516 (2017) [arXiv:1611.07480 [hep-ex]].
[79] R. Acciarri et al. [DUNE Collaboration], “Long-Baseline Neutrino Facility (LBNF) and Deep Underground
Neutrino Experiment (DUNE) : Volume 1: The LBNF and DUNE Projects,” arXiv:1601.05471 [physics.ins-
det].
[80] R. Acciarri et al. [DUNE Collaboration], “Long-Baseline Neutrino Facility (LBNF) and Deep Underground
Neutrino Experiment (DUNE) : Volume 2: The Physics Program for DUNE at LBNF,” arXiv:1512.06148
[physics.ins-det].
[81] R. Acciarri et al. [DUNE Collaboration], “Long-Baseline Neutrino Facility (LBNF) and Deep Underground
Neutrino Experiment (DUNE) : Volume 4 The DUNE Detectors at LBNF,” arXiv:1601.02984 [physics.ins-det].
[82] M. Ablikim et al. [BESIII Collaboration], “Evidence of Two Resonant Structures in e+ e-
->p+p-hc,” Phys. Rev. Lett. 118, no. 9, 092002 (2017) doi:10.1103/PhysRevLett.118.092002 [arXiv:1610.07044 [hep-ex]].
[83] M. Ablikim et al. [BESIII Collaboration], “Observation of e+ e-->hc at center-of-mass energies from 4.085 to 4.600 GeV,” Phys. Rev. D 96, no. 1, 012001 (2017) doi:10.1103/PhysRevD.96.012001 [arXiv:1704.08033 [hep-ex]].
[84] M. Ablikim et al. [BESIII Collaboration], “Observation of J/????p0,” Phys. Rev. D 94, no. 7, 072005 (2016) doi:10.1103/PhysRevD.94.072005 [arXiv:1608.07393 [hep-ex]].
[85] M. Ablikim et al. [BESIII Collaboration], “Observation of the doubly radiative decay ?'???p0,” Phys. Rev. D 96, no. 1, 012005 (2017) doi:10.1103/PhysRevD.96.012005 [arXiv:1612.05721 [hep-ex]].
[86] M. Ablikim et al. [BESIII Collaboration], “Improved measurements of branching fractions for ?c ?ff and ?f,” Phys. Rev. D 95, no. 9, 092004 (2017) doi:10.1103/PhysRevD.95.092004 [arXiv:1612.02941 [hep-ex]].
[87] M. Ablikim et al. [BESIII Collaboration], “Measurement of the D+s?l+?lbranching fractions and the decayconstant fD+,” Phys. Rev. D 94, no. 7, 072004 (2016)doi:10.1103/PhysRevD.94.072004 [arXiv:1608.06732[hep-ex]].
[88] P. Adamson et al. [NOvA Collaboration], “First measurement of muon-neutrino disappearance in NOvA,” Phys. Rev. D 93, no. 5, 051104 (2016) doi:10.1103/PhysRevD.93.051104 [arXiv:1601.05037 [hep-ex]].
[89] P. Adamson et al. [NOvA Collaboration], “First measurement of electron neutrino appearance in NOvA,” Phys. Rev. Lett. 116, no. 15, 151806 (2016) doi:10.1103/PhysRevLett.116.151806 [arXiv:1601.05022 [hep-ex]].
[90] J. Bian [NOvA Collaboration], “First Results of ?e Appearance Analysis and Electron Neutrino Identification
at NOvA,” Proceedings of the Meeting of the American Physical Society (APS) Division of Particles and Fields
(DPF2015), arXiv:1510.05708 [hep-ex].
[91] M. Baird, J. Bian, M. Messier, E. Niner, D. Rocco and K. Sachdev, “Event Reconstruction Techniques in NOvA,”
J. Phys. Conf. Ser. 664, no. 7, 072035 (2015). doi:10.1088/1742-6596/664/7/072035
[92] M. Ablikim et al. [BESIII Collaboration], “Measurement of the branching fraction for ?(3770) ???c0,”
Phys. Lett. B 753, 103 (2016) doi:10.1016/j.physletb.2015.11.074 [arXiv:1511.01203 [hep-ex]].
[93] J. Bian, “Studies of Charmonium-like States at BESIII,” Proceedings of the Twelfth Conference on the Inter-
sections of Particle and Nuclear Physics (CIPANP2015), arXiv:1510.01239 [hep-ex].
[94] J. Bian, “The CAPTAIN Experiment,” Meeting of the American Physical Society(APS) Division of Particles
and Fields (DPF2015) proceedings, arXiv:1509.07739 [hep-ex]. arXiv:1509.07739 [physics.ins-det].
[95] M. Ablikim et al. [BESIII Collaboration], “Observation of Zc(3900)0 in e+ e-
115, no. 11, 112003 (2015) [arXiv:1506.06018 [hep-ex]].
?p0p0J/?,” Phys. Rev. Lett.
[96] M. Ablikim et al. [BESIII Collaboration], “Observation of e+ e-
structure Zc(4020)0,” Phys. Rev. Lett. 113, 212002 (2014)
?p0p0hc and a neutral charmoniumlike
[97] Jianming Bian “A Review of Heavy Exotic States,” Proceedings of the XXXIV Physics in Collision (PIC2014), arXiv:1411.4343 [hep-ex].
[98] M. Ablikim et al. [BESIII Collaboration], “Observation of e+ e-?p0p0hc and a neutral charmoniumlike structure Zc(4020)0,” Phys. Rev. Lett. 113, 212002 (2014) arXiv:1409.6577 [hep-ex]. “The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe,”
[99] M. Ablikim et al. [BESIII Collaboration], “Observation of a Charged Charmoniumlike Structure Zc(4020) and Search for the Zc(3900) in e+ e-?p+p-hc,” Phys. Rev. Lett. 111, no. 24, 242001 (2013) [arXiv:1309.1896 [hep-ex]].
[100] Jianming Bian, “The NOvA Experiment: Overview and Status," Meeting of the American Physical Society(APS) Division of Particles and Fields (DPF2013) proceedings, arXiv:1309.7898 [hep-ex].
[101] M. Ablikim et al. [BESIII Collaboration], “Study of ?(3686) ?p0hc, hc ???c via ?c exclusive decays,” Phys. Rev. D 86, 092009 (2012) [arXiv:1209.4963 [hep-ex]].
[102] M. Ablikim et al. [BESIII Collaboration], “Study of J/??p¯p and J/??n¯ n,” Phys. Rev. D 86, 032014 (2012) [arXiv:1205.1036 [hep-ex]].
[103] M. Ablikim et al. [BESIII Collaboration], “Two-photon widths of the ?c0,2 states and helicity analysis for?c2 ???,” Phys. Rev. D 85, 112008 (2012) [arXiv:1205.4284 [hep-ex]].
[104] M. Ablikim et al. [BESIII Collaboration], “Measurements of hc(1 P1) in ?'Decays,”
Phys. Rev. Lett. 104, 132002 (2010) [arXiv:1002.0501 [hep-ex]].
[105] J. M. Bian et al., “Absolute Photon Energy Calibration for BESIII EMC,”
Chinese Physics C, 34, 72 (2010).
[106] M. Ablikim et al. [BESIII Collaboration], “Design and Construction of the BESIII Detector,” Nucl. Instrum.
Meth. A 614, 345 (2010) [arXiv:0911.4960 [physics.ins-det]].
[107] L. Yan et al., “Lagrange multiplier method used in BESIII kinematic fitting,”
Chinese Physics C, 34, 204 (2010).
[108] J. M. Bian, X. Y. Shen and W. G. Li, “J/psi inclusive photon spectrum at BESIII,” Chin. Phys. Lett. 26, 041302 (2009).
[109] J. M. Bian et al., “Light hadron physics,”
Int. J. Mod. Phys. A 24S1 (2009) 169.
[110] M. He et al., “Energy loss correction for a crystal calorimeter,”
Chinese Physics C, 32, 269 (2008).
[111] G. Qin et al., “Particle identification using artificial neural networks at BESIII,”
Chinese Physics C, 32, 1 (2008).
[112] J. Bian, “A Review of hc(1P1), ?c(1S) and ?c(2S),” The 5th International Workshop on Charm Physics
(Charm 2012) proceedings. arXiv:1209.0397 [hep-ex].
[113] J. M. Bian [BESIII Collaboration], “Study of hc(1 P1) at BESIII,”
AIP Conf. Proc. 1257, 336 (2010).
The XIII International Conference on Hadron Spectroscopy (Hadron09) proceedings.
[114] J. M. Bian, “Absolute energy calibration and the use of time information of BESIII EMC,” J. Phys. Conf. Ser. 293, 012047 (2011). The XIV International Conference on Calorimetry in High Energy Physics (Calor 2010) proceedings, submit-
ted


For a complete list of publications see: https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20a%20J.M.%20Bian%20or%20Jianming%20Bian&ui-citation-summary=true
Last updated
08/17/2025