David A Fruman
Professor and Chair, Molecular Biology and Biochemistry
School of Biological Sciences
School of Biological Sciences
Director, Cancer Research Institute
Academic Director, GPS-STEM program for graduate professional development
Associate Director for Basic Science, Chao Family Comprehensive Cancer Center
B.S., Stanford University
PH.D., Harvard University
PH.D., Harvard University
ORCiD: 0000-0002-1796-5162
University of California, Irvine
Department of Molecular Biology and Biochemistry
839 Health Sciences Road
216 Sprague Hall
Mail Code: 3905
Irvine, CA 92697
Department of Molecular Biology and Biochemistry
839 Health Sciences Road
216 Sprague Hall
Mail Code: 3905
Irvine, CA 92697
Research Interests
signal transduction, immunology, cancer, leukemia, kinase, apoptosis, targeted therapy
Websites
Academic Distinctions
Howard Hughes Medical Institute Predoctoral Fellow
Leukemia & Lymphoma Society Special Fellow
Leukemia & Lymphoma Society Special Fellow
Appointments
Postdoctoral Fellowship, Damon Runyon Cancer Research Fund (www.damonrunyon.org), 1995-1998
Special Fellowship, Leukemia & Lymphoma Society, 1998-2000
Special Fellowship, Leukemia & Lymphoma Society, 1998-2000
Research Abstract
Lymphocytes circulate through the blood and lymphoid tissues in a resting state. Upon encountering antigens, they become activated to proliferate and differentiate. Lymphocytes also respond to other environmental cues, including cytokines and cell surface proteins on neighboring cells. The transmission of signals from outside the cell to the inside to modulate cell behavior is termed signal transduction.
Activation of phosphoinositide 3-kinase (PI3K) is a critical step in signal transduction pathways triggered by a variety of extracellular stimuli. The lipid products of PI3K serve as second messengers to recruit specific phospholipid-binding proteins to the plasma membrane. Excessive activation of PI3K signaling can cause transformation of certain cell types in vitro and has been observed in many tumors. Many isoforms of PI3K are expressed in mammalian cells, and many putative effector proteins have been identified. One crucial protein kinase downstream of PI3K is the mammalian target of rapamycin (mTOR). My laboratory is interested in the role of PI3K and mTOR in the function of normal cells and in the development of cancer cells. We are particularly interested in cells of the immune system, both normal lymphocytes and their transformed counterparts. Using gene targeting and pharmacological approaches we study the role of PI3K and mTOR in lymphocyte development, activation, and transformation. We are also studying how different mTOR substrates carry out proliferation and survival programs. We are particularly interested in the translation initiation complex known as eIF4F and are developing genetic and chemical tools to define the roles of different eIF4F components in leukemogenesis and normal B cell function.
A new area of research in the lab involves identifying combination strategies to enhance cancer cell killing by an emerging class of drugs known as BH3 mimetics. These compounds directly bind to BCL2 family members at the mitochondria and promote apoptosis. We have shown that statin drugs, commonly used to reduce cholesterol, strongly enhance the pro-apoptotic effect of the BH3 mimetic compound venetoclax. We are currently working to define the mechanism and are also collaborating on clinical trials of pitavastatin with venetoclax in CLL and AML.
Activation of phosphoinositide 3-kinase (PI3K) is a critical step in signal transduction pathways triggered by a variety of extracellular stimuli. The lipid products of PI3K serve as second messengers to recruit specific phospholipid-binding proteins to the plasma membrane. Excessive activation of PI3K signaling can cause transformation of certain cell types in vitro and has been observed in many tumors. Many isoforms of PI3K are expressed in mammalian cells, and many putative effector proteins have been identified. One crucial protein kinase downstream of PI3K is the mammalian target of rapamycin (mTOR). My laboratory is interested in the role of PI3K and mTOR in the function of normal cells and in the development of cancer cells. We are particularly interested in cells of the immune system, both normal lymphocytes and their transformed counterparts. Using gene targeting and pharmacological approaches we study the role of PI3K and mTOR in lymphocyte development, activation, and transformation. We are also studying how different mTOR substrates carry out proliferation and survival programs. We are particularly interested in the translation initiation complex known as eIF4F and are developing genetic and chemical tools to define the roles of different eIF4F components in leukemogenesis and normal B cell function.
A new area of research in the lab involves identifying combination strategies to enhance cancer cell killing by an emerging class of drugs known as BH3 mimetics. These compounds directly bind to BCL2 family members at the mitochondria and promote apoptosis. We have shown that statin drugs, commonly used to reduce cholesterol, strongly enhance the pro-apoptotic effect of the BH3 mimetic compound venetoclax. We are currently working to define the mechanism and are also collaborating on clinical trials of pitavastatin with venetoclax in CLL and AML.
Available Technologies
Awards and Honors
AAAS Fellow
Short Biography
David Fruman is a Professor at UC Irvine where he has been a faculty member since 2000. In 2016 he was elected as a AAAS Fellow. His research interest is signal transduction in lymphocytes, with an emphasis on targeted therapies for blood cancer and immune diseases. He previously served as Associate Director of the UCI Institute for Immunology and is currently the Director of the UCI Cancer Research Institute. He is also Associate Director for Basic Science of the UCI Chao Family Comprehensive Cancer Center.
Professor Fruman has a strong interest in graduate education and was Director of the Cellular & Molecular Biosciences PhD program from 2011-2015. From 2014-2019 he was Director of the GPS-BIOMED program, supported by a NIH-BEST grant, which enhanced professional development of UCI graduate students and postdoctoral fellows in the biomedical sciences. He now serves as Academic Director of the program, under its new name GPS-STEM. From 2020-2023 he serve as Director or co-Director of the Masters in Biotechnology Management (MSBTM) Program.
Professor Fruman has a strong interest in graduate education and was Director of the Cellular & Molecular Biosciences PhD program from 2011-2015. From 2014-2019 he was Director of the GPS-BIOMED program, supported by a NIH-BEST grant, which enhanced professional development of UCI graduate students and postdoctoral fellows in the biomedical sciences. He now serves as Academic Director of the program, under its new name GPS-STEM. From 2020-2023 he serve as Director or co-Director of the Masters in Biotechnology Management (MSBTM) Program.
Publications
Brem, E, Shieh, K, Juarez, D, Buono, R, Jeyakumar, D, O’Brien, S, Taylor, TH, Fruman, DA. A phase 1 study of adding pitavastatin to venetoclax-based therapy in AML and CLL/SLL: a tolerable, mechanism-based, drug repurposing strategy. 2024. Blood Neoplasia, in press
Hillis, AL, Martin, TD, Manchester, HE, Hogstrom, JM. Zhang, N, Lecky, E, Kozlova, N, Persky, NS, Root, DE, Brown, M, Cichowski, KM, Elledge, SJ, Muranen, T, Fruman, DA, Barry, ST, Clohessy, JG, Madsen, RR and Toker, A. Cholesterol biosynthesis inhibition synergizes with AKT inhibitors in triple-negative breast cancer. 2024. Cancer Research, in press. Epub July 18
Chun, Y, Fruman, DA, Lee, G. The picky mTORC1 in metabolic enzyme degradation. 2024. Mol. Cell, 84:2011-2013
Juarez D, Buono R, Matulis SM, Gupta VA, Duong M, Yudiono J, Paul, M, Mally, S, Diep, S, Hsin, P, Lu, A, Suh, SM, Dong, VM, Roberts, AW, Leverson, JD, Jalaluddin, M, Liu, Z, Bueno, OF, Boise, LH, Fruman, DA. Statin-induced mitochondrial priming sensitizes multiple myeloma cells to BCL2 and MCL-1 inhibitors. 2023; Cancer Research Communications, 3: 2497-2509.
Paul, M, Fruman, DA. The road less traveled: Activating an oncogenic kinase. 2023. Trends in Pharmacological Sciences, 44:640-642.
Glaviano, S, Foo, ASC, Lam, HY, Yap, KCH, Jacot, W, Jones, RH, Eng, H, Nair, MG, Makvandi, P, Geoerger, B, Kulke, MH, Baird, RD, Prabhu, JS, Carbone, D, Pecoraro, C, Teh, DBL, Sethi, G, Cavalieri, V, Lin, KH, Javidi-Sharifi, NR, Toska, E, Davids, MS, Brown, JR, Diana, P, Stebbing, J, Fruman, DA, Kumar, AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. 2023. Molecular Cancer, 22:138.
Niman, S, Buono, R, Fruman, DA, Vanderwal, C. Synthesis of a Complex Brasilicardin Analogue Utilizing a Cobalt-Catalyzed MHAT-Induced Radical Bicyclization Reaction. 2023. Organic Letters, 25: 3451-3455.
Bardwell, AJ, Paul, M, Yoneda, KC, Andrade-Ludena, MD, Nguyen, OT, Fruman, D, Bardwell, L. The WW domain of IQGAP1 binds directly to the p110a catalytic subunit of PI 3-kinase. 2023. Biochemical Journal, 480: 729–750.
Finicle, BT, Eckenstein, KH, Revenko, AS, Anderson, BA, Wan, WB, McCracken, AN, Gil, D, Fruman, DA, Hanessian, S, Seth, PP, Edinger, AL. Simultaneous inhibition of endocytic recycling and lysosomal fusion sensitizes cells and tissues to oligonucleotide therapeutics. 2023. Nucleic Acids Research, 51: 1583-1599
Mohammad, SN, Choi, YS, Chung, YJ, Cedrone, E, Neun, BW, Dobrovolskaia, MA, Yang, X, Guo, W, Chew, YP, Kim, J, Baek, SG, Kim, IS, Fruman, DA, Kwon, YJ. Nanocomplexes of doxorubicin and DNA fragments for efficient and safe cancer chemotherapy. 2023. Journal of Controlled Release, 354: 91-108.
Vo, TT, Herzog, L, Buono, R, Lee, JS, Mallya, S, Duong, MR, Thao, J, Gotesman, M, Fruman, DA. Targeting eIF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition. 2021. Scientific Reports,11: 21689.
Lee, BJ, Mallya, S, Dinglasan, N, Fung, A, Nguyen, T, Herzog, L, Thao, J, Lorenzana, EG, Wildes, D, Singh, M, Smith, JA, Fruman, DA. Efficacy of novel bi-steric mTORC1 inhibitor in models of B-cell acute lymphoblastic leukemia. 2021. Frontiers in Oncology, Epub Aug 2.
Herzog, L, Walters, B, Lee, JS, Chiu, H, Mallya, S, Fung, A, Nguyen, N, Li, B, Pinkerton, AB, Jackson, MR, Schneider, RJ, Ronai, ZA, Fruman, DA. Targeting eIF4F Translation Initiation Complex with SBI-756 Sensitizes B Lymphoma Cells to Venetoclax. 2021. Br. J. Cancer, 124: 1098–1109
Juarez D, Fruman, DA. Targeting the mevalonate pathway in cancer. 2021. Trends in Cancer, 7: 525-540.
Adefemi, N, Fruman, DA, Marshall, AJ. A case for phosphoinositide 3-kinase-targeted therapy for infectious disease. 2020. J. Immunol., 205: 3237-3245
Chiu, H, Jackson, LV, Oh, KI, Mai, A, Ronai, ZA, Ruggero, D, Fruman, DA. The mTORC1/4E-BP/eIF4E Axis Promotes Antibody Class Switching in B Lymphocytes. 2019. J. Immunol., 202: 579-590.
Meli, VS, Atcha, H, Veerasubramanian, PK, Nagalla, R, Luu, TU, Chen, EY, Guerrero-Juarez, CF, Yamaga, K, Pandori, W, Hsieh, JY, Downing, TL, Fruman, DA, Lodoen, MB, Plikus, MV, Wang, W, Liu, WF. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. 2020. Sci. Adv., 6: eabb8471
Ishak Gabra, MB, Yang, Y, Li, H, Senapati, P, Hanse, EA, Lowman, XH, Tran, TQ, Zhang, L, Doan, LT, Xu, X, Schones, DE, Fruman, DA, Kong, M. Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth. 2020. Nat. Comm., 11: 3326
Ko, TK, Javed, A, Lee, KL, Pathiraja, TN, Liu, X, Malik, S, Soh, SX, Heng, XT, Takahashi, N, Tan, JH, Bhatia, R, Khng, AJ, Chng, WJ, Sia, YY, Fruman, DA, Ng, KP, Chan, ZE, Xie, KJ, Hoi, Q, Chan, C, Teo, AS, Velazquez, O, Meah, WY, Khor, CC, Ong, CT, Soon, WW, Tan, P, Ng, PC, Chuah, C, Hillmer, AM, Ong, ST. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. 2020. Blood, 135: 2337-2353
Fruman, DA. Targeting PI3Kgamma in non-Hodgkin’s lymphoma. 2019. J. Clin. Oncol., 37: 932-934
Lee, JS, Roberts, A, Vo, TT, Juarez, D, Bhatt, S, Bellin, RJ, Agarwal, SK, Salem, AH, Xu, T, Jia, J, Li, L, Hanna, JR, Davids, MS, Fleischman, AG, O’Brien, S, Lam, LT, Leverson, JD, Letai, A, Schatz, J, Fruman, DA. Statins enhance efficacy of venetoclax in blood cancers. 2018. Sci. Transl. Med., Jun 13;10(445).
Thompson, JM, Alvarez, A, Singha, MK, Pavesic, MW, Nguyen, QH, Nelson, LJ, Fruman, DA, Razorenova, OV. Targeting the mevalonate pathway suppresses VHL-deficient CC-RCC through a HIF-dependent mechanism. 2018. Mol. Cancer Ther. Epub May 2.
Karimzadeh, A., Scarfone, VM, Varady, E, Chao, C, Grathwohl, K, Fathman, JW, Fruman, DA, Serwold, T, Inlay, MA. The CD11a and Endothelial Protein C receptor marker combination simplifies and improves the purification of mouse hematopoietic stem cells. 2018. Stem Cells Transl. Med., Epub March 15.
Zhang, Q, Shi, C, Han, L, Jain, N, Roberts, KG, Ma, H, Cai, T, Cavazos, A, Tabe, Y, Jacamo, RO, Mu, H, Zhao, Y, Wang, J, Wu, SC, Cao, F, Zeng, Z, Zhou, J, Mi, Y, Jabbour, EJ, Levine, R, Tasian, SK, Mullighan, CG, Weinstock, DM, Fruman, DA, Konopleva, M. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome–like acute B-cell lymphoblastic leukemia. 2018. Oncotarget, 9: 8027-8041.
Gotesman, M, Vo, TT, Herzog, L, Tea, T, Mallya, S, Tasian, SK, Konopleva, M, Fruman, DA. mTOR inhibition enhances efficacy of dasatinib in ABL-rearranged Ph-like B-ALL. 2018. Oncotarget, 9: 6562-6571.
Fruman, DA, Chiu, H, Hopkins, BD, Bagrodia, S, Cantley, LC, Abraham, RT. The PI3K pathway in human disease. 2017. Cell, 170: 605-635.
Chiu, H, Mallya, S, Nguyen, P, Mai, A, Winkler, DG, McGovern, K, Kutok, JL, Fruman, DA. The selective PI3K p110d inhibitor IPI-3063 potently suppresses B cell survival, proliferation and differentiation. 2017. Front. Immunol., 8: 747.
Vo, TT, Lee, JS, Nguyen, D, Lui, B, Pandori, W, Khaw, A, Mallya, S, Lu, M, Müschen, M, Konopleva, M, Fruman, DA. mTORC1 inhibition induces resistance to methotrexate and 6-mercaptopurine in Ph+ and Ph-like B-ALL. 2017. Mol. Cancer Therap., Epub May 31.
Deng, C, Lipstein, MM, Scott, L, Serrano, XO, Mangone, MA, Li, S, Vendome, J, Hao, Y, Xu, X, Deng, SX, Realubit, RB, Tatonetti, NP, Karan, C, Lentzsch, S, Fruman, DA, Honig, B, Landry, DW, O’Connor, OA. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kdelta and CK1epsilon in hematological malignancies. 2016. Blood, Epub Oct. 26.
Pai, C, Walsh, CM, Fruman, DA. Context-specific function of S6K2 in helper T cell differentiation. 2016. J. Immunol., Epub Sept. 9.
Hong, CA, Cho, SK, Edson, JA, Kim, J, Ingato, D, Pham, B, Chuang, A, Fruman D, Kwon, YJ. Viral/Nonviral chimeric nanoparticles to synergistically suppress leukemia proliferation via simultaneous gene transduction and silencing. 2016. ACS Nano, Epub Aug 5.
Zeng, Z, Wang, RY, Qiu, YH, Mak, DH, Coombes, K, Yoo, SY, Zhang, Q, Jessen, K, Liu, Y, Rommel, C, Fruman, DA, Kantarjian, HM, Kornblau, SM, Andreeff, M, Konopleva, M. MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/progenitor cells. 2016. Oncotarget, Epub July 4
So, L, Lee, J, Palafox, M, Mallya, S, Woxland, C, Arguello, M, Truitt, M, Sonenberg, N, Ruggero, D, Fruman, DA. The 4E-BP/eIF4E axis promotes rapamycin-sensitive growth and proliferation in lymphocytes. 2016. Science Signaling, 9: ra57
Fruman, DA. mTOR signaling: New networks for ALL. 2016. Blood, 127:2658-9.
Lee, JS, Vo, TT, Fruman, DA. Targeting mTOR for the treatment of B cell malignancies. 2016. Br. J. Clin. Pharmacol., 82: 1213-1228
Lee, JS, Tang, SS, Ortiz, V, Vo, TT, Fruman, DA. MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma. 2015. Oncotarget, 6: 35202-17.
Beagle, BR, Nguyen, D, Mallya, S, Tang, SS, Lu, M, Zeng, A, Konopleva, M, Vo, TT, Fruman, DA. mTOR inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells. 2015. Oncotarget, 6: 2088-100.
Limon, JJ, So, L, Jellbauer, S, Chiu, H, Corado, J, Sykes, S, Raffatellu, M, Fruman, DA. mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. 2014. PNAS, Epub Nov. 10
Yea, SS, So, L, Mallya, S, Lee, J, Rajasekaran, K, Malarkannan, S, Fruman, DA. Effects of novel isoform-selective phosphoinositide 3-kinase inhibitors on natural killer cell function. 2014. PLOS ONE, 9(6): e99486.
Zhang, Z, Eckert, MA, Ali, MM, Liu, L, Kang, DK, Chang, E, Pone, EJ, Sender, L, Fruman, DA, Zhao, W. DNA-Scaffolded Multivalent Ligands to Modulate Cell Function. 2014. ChemBioChem, 15:1268-73.
Walsh, CM, Fruman, DA. Too much of a good thing: immunodeficiency due to hyperactive PI3K signaling. 2014. J. Clin. Invest., 124: 3688-90.
Fruman, DA, Cantley, LC. Idelalisib: a PI3K delta inhibitor for B cell malignancies. 2014. New Engl. J. Med., 370: 1061-2.
Mallya, S, Fitch, BA, Lee, JS, So, L, Janes, MR, Fruman, DA. Resistance to mTOR kinase inhibitors in lymphoma cells lacking 4EBP1. 2014. PLOS ONE, 9(2): e88865.
Fruman, DA, Rommel, C. PI3K and cancer: lessons, challenges, and opportunities. 2014. Nat. Rev. Drug Discov., 13:140-56.
Conley, ME, Fruman, DA. Can cancer drugs treat immunodeficiency? 2013. Science, 342:814-5.
Yea, SS, Fruman, DA. Achieving cancer cell death with PI3K/mTOR-targeted therapies. 2013. Ann. NY Acad. Sci., 1280: 15-18.
Zhang, Z, Ali, MM, Eckert, MA, Kang, DK, Chen, YY, Sender, L, Fruman, DA, Zhao, W. A polyvalent aptamer system for targeted drug delivery. 2013. Biomaterials. 34:9728-35.
Lim, S, Saw, J, Zhang, M, Janes, MR, Lim, AQ, Chang, CT, Fruman, DA, Rizzieri, DA, Tan, SY, Fan, H, Chuah, CTH, Ong, ST. Targeting of the MNK-eIF4E axis in blast crisis chronic myelogenous leukemia inhibits leukemia stem cell function. 2013. PNAS Plus, 110: E2298-307.
So, L, Yea, SS, Oak, JS, Manmadhan, A, Ke, QH, Janes, MR, Kessler, L, Kucharski, J, Li, LS, Martin, MB, Ren, P, Jessen, K, Rommel, C, Fruman, DA. Selective inhibition of phosphoinositide 3-kinase p110? preserves lymphocyte function. 2012. J. Biol. Chem., Epub Dec. 28
Janes, MR, Vu, C, Mallya, S, Shieh, M, Limon, JJ, Lilly, MB, Sender, L, Si, LS, Martin, MB, Ren, P, Liu, Y, Rommel, C, Fruman, DA. Efficacy of the mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. 2012. Leukemia, Epub Oct. 23
Zeng, Z, Shi, YX, Tsao, T, Qui, Y, Kornblau, SM, Baggerly, KA, Liu, W, Jessen, K, Liu, Y, Kantarjian, H, Rommel, C, Fruman, DA, Andreeff, M, Konopleva, M. Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. 2012. Blood, 120: 2679-89.
Limon, JJ, Fruman, DA. Akt and mTOR in B cell activation and differentiation. 2012. Front. Immunol., 3: 228-240.
So, L, Fruman, DA. PI 3-kinase signaling in the immune system. 2012. Biochem J, 442: 465-481.
Fruman, DA, Rommel, C. PI3Kdelta inhibitors in cancer: rationale and serendipity merge in the clinic. 2011. Cancer Discovery, 1: 562-72.
Romero Rosales, KR, Singh, G, Wu, K, Chen, J, Janes, MR, Lilly, MB, Peralta, ER, Siskind, LJ, Bennett, MJ, Fruman, DA, Edinger, AL. Sphingolipid-based drugs selectively kill cancer cells by downregulating nutrient transporters. 2011. Biochem. J., 439: 299-311.
Janes, MR, Fruman, DA. The in vivo evaluation of active-site TOR inhibitors in models of BCR-ABL+ leukemia. In Thomas Weichhart, editor: Methods in Molecular Biology volume entitled “mTOR: Methods and Protocols”. 2012. Meth. Mol. Biol. 821: 251-65.
Casey, SC, Nelson, EL, Turco, GM, Janes, MR, Fruman, DA, Blumberg, B. B-1 Cell Lymphoma in Mice Lacking the Steroid and Xenobiotic Receptor, SXR. 2011. Mol. Endocrinol., 25: 933-43.
Yea, SS, Fruman, DA. New mTOR targets Grb attention. 2011. Science, 332: 1270-1.
Access free text using these links:
Summary: http://www.sciencemag.org/cgi/content/summary/332/6035/1270?ijkey=QbPRf76.puQqM&keytype=ref&siteid=sci
Reprint: http://www.sciencemag.org/cgi/rapidpdf/332/6035/1270?ijkey=QbPRf76.puQqM&keytype=ref&siteid=sci
Full Text: http://www.sciencemag.org/cgi/content/full/332/6035/1270?ijkey=QbPRf76.puQqM&keytype=ref&siteid=sci
Access free text using these links:
Summary: http://www.sciencemag.org/cgi/content/summary/332/6035/1270?ijkey=QbPRf76.puQqM&keytype=ref&siteid=sci
Reprint: http://www.sciencemag.org/cgi/rapidpdf/332/6035/1270?ijkey=QbPRf76.puQqM&keytype=ref&siteid=sci
Full Text: http://www.sciencemag.org/cgi/content/full/332/6035/1270?ijkey=QbPRf76.puQqM&keytype=ref&siteid=sci
Beagle, B, Fruman, DA. Lipid kinase cousins cooperate to promote cancer. 2011. Cancer Cell, 19: 693-5.
Fruman, DA. Regulatory subunits of class IA PI3K. In Peter K. Vogt, Christian Rommel, and Bart Vanhaesebroeck, editors: CTMI volume on “Phosphoinositide 3-kinase in health and disease”, 2010. Pp. 225-244. Also available on PubMed as Curr. Top. Microbiol. Immunol., 346: 225-244 (2011).
Okkenhaug, K, Fruman, DA. PI3Ks in lymphocyte signaling and development. In Peter K. Vogt, Christian Rommel, and Bart Vanhaesebroeck, editors: CTMI volume on “Phosphoinositide 3-kinase in health and disease”, Springer-Verlag, 2010. Pp. 57-85. Also available on PubMed as Curr. Top. Microbiol. Immunol., 346: 57-85 (2011).
Vu, C, Fruman, DA. Targeting TOR signaling in leukemia and lymphoma. 2010. Clin. Cancer Res. 16: 5374-80.
Janes, MR, Fruman, DA. Targeting TOR dependency in cancer. 2010. Oncotarget 1: 69-76.
Limon, JJ, Fruman, DA. B cell receptor signaling: Picky about PI3Ks. 2010. Sci. Signal. 3: pe25.
Access full text using these links:
Abstract: http://stke.sciencemag.org/cgi/content/abstract/sigtrans;3/134/pe25?ijkey=zWqqea0ay9YX2&keytype=ref&siteid=sigtrans
Reprint: http://stke.sciencemag.org/cgi/reprint/sigtrans;3/134/pe25?ijkey=zWqqea0ay9YX2&keytype=ref&siteid=sigtrans
Full Text: http://stke.sciencemag.org/cgi/content/full/sigtrans;3/134/pe25?ijkey=zWqqea0ay9YX2&keytype=ref&siteid=sigtrans
Access full text using these links:
Abstract: http://stke.sciencemag.org/cgi/content/abstract/sigtrans;3/134/pe25?ijkey=zWqqea0ay9YX2&keytype=ref&siteid=sigtrans
Reprint: http://stke.sciencemag.org/cgi/reprint/sigtrans;3/134/pe25?ijkey=zWqqea0ay9YX2&keytype=ref&siteid=sigtrans
Full Text: http://stke.sciencemag.org/cgi/content/full/sigtrans;3/134/pe25?ijkey=zWqqea0ay9YX2&keytype=ref&siteid=sigtrans
Janes, MR, Limon, JJ, So, L, Chen, J, Lim, RJ, Chavez, MA, Vu, C, Lilly, MB, Mallya, S, Ong, ST, Konopleva, M, Martin, MB, Ren, P, Liu, Y, Rommel, C, Fruman, DA. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. 2010. Nat. Med. 16: 205-213.
Chen, J, Blanc, C, Peng, SL, Fruman, DA. Foxo1 regulates marginal zone B cell development. 2010 Eur. J. Immunol., Epub May 6
Alcazar, I, Barber, DF, Cortes, I, Fruman, DA, Carrera, AC. p85beta phosphoinositide 3-kinase regulates CD28 co-receptor function. 2009. Blood, 113: 3198-208.
Janes, MR, Fruman, DA. Immune regulation by rapamycin: moving beyond T cells. 2009. Sci. Signal. 2: pe25.
Oak, JS, Chen, J, Peralta, RQ, Deane, JA, Fruman, DA. The p85beta regulatory subunit of phosphoinositide 3-kinase has unique and redundant functions in B cells. 2009. Autoimmunity, 42: 447-458.
Fabre, S, Carrette, F, Chen, J, Lang, C, Semichon, M, Denoyelle, C, Lazar, V, Cagnard, N, Dubart-Kupperschmitt, A, Mangeney, M, Fruman, DA, Bismuth, G. FOXO1 regulates L-selectin and a network of human T-cell homing molecules downstream of PI3K. 2008 J. Immunol., 181: 2980-9.
Fruman, DA, Bismuth, G. Fine tuning the immune response with PI3K. 2009. Immunol. Rev. 228: 253-272.
De Souza, AJ, Oak, JS, Jordanhazy, R, DeKruyff, RH, Fruman, DA, Kane, LP. Tim-1-mediated T cell activation requires recruitment and activation of PI 3-Kinase. 2008. J. Immunol., 180: 6518-26.
Kharas, MG, Janes, MR, Scarfone, VM, Lilly, MB, Knight, ZA, Shokat, KS, Fruman, DA. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of BCR-ABL+ leukemia cells. 2008. J. Clin. Invest., 118: 3038-50.
Yusuf, I, Kharas, MG, Chen, J, Maruniak, A, Sareen, P, Tomayko, M, Shlomchik, MJ, Yang, VW, Kaestner, KH, Fruman, DA. KLF4 is a FOXO target gene that suppresses B cell proliferation. 2008. Int. Immunol, 20: 671-81.
Oak, JS, Matheu, MP, Parker, I, Cahalan, MD, Fruman, DA. Lymphocyte cell motility: the twisting, turning tale of phosphoinositide 3-kinase. 2007. Biochem. Soc. Trans., 35: 1109-13.
Donahue, AC, Kharas, MG, Fruman, DA. Measuring phosphoAkt and other PI3K-regulated phosphoproteins in primary lymphocytes. 2007. Methods Enzymol.,434: 131-54.
Oak, JS, Fruman, DA. Role of phosphoinositide 3-kinase signaling in autoimmunity. 2007. Autoimmunity, 40(6): 433-41.
Fruman, DA. The role of class I phosphoinositide 3-kinase in T cell function and autoimmunity. 2007 Biochem. Soc. Trans., 35(2): 177-80.
Donahue, AC, Fruman, DA. Distinct signaling mechanisms activate the target of rapamycin in response to different B cell stimuli. 2007. Eur. J. Immunol., 37: 2923-36.
Matheu, MP, Deane, JA, Parker, I, Fruman, DA, Cahalan, MD. Class IA phosphoinositide 3-kinase signaling is critical for basal lymphocyte motility in the lymph node. 2007. J. Immunol., 179: 2261-9.
Fruman, DA. The role of class I phosphoinositide 3-kinase in T cell function and autoimmunity. 2007 Biochem. Soc. Trans., 35(2): 177-80.
Deane, JA, Kharas, MG, Oak, JS, Stiles, LN, Luo, J, Moore, TI, Ji, H, Rommel, C, Cantley, LC, Lane, TE, Fruman, DA. T cell function is partially maintained in the absence of class IA phosphoinositide 3-kinase regulatory isoforms. 2007. Blood, 109: 2894-902.
Kharas, MG, Yusuf, I, Scarfone, VM, Yang, VW, Segre, JA, Huettner, CS, Fruman, DA. KLF4 opposes transformation of pre-B cells by ABL oncogenes. 2007. Blood, 109: 747-55.
Oak, JS, Deane, JA, Kharas, MG, Luo, J, Lane, TE, Cantley, LC, Fruman, DA. Sjögren’s Syndrome-like disease in mice with T cells lacking phosphoinositide 3-kinase. 2006. Proc. Natl. Acad. Sci. 103: 16882-7.
Chen, J, Yusuf, I, Andersen, H, Fruman, DA. FOXO transcription factors cooperate with dEF1 to activate growth suppressive genes in B lymphocytes. 2006. J. Immunol., 176: 2711-21.
Kharas, MG, Fruman, DA. Abl oncogenes and PI3K: Mechanisms of activation and downstream effectors. 2005. Cancer Res., 65: 2047-53.
Brachmann, S, Yballe, CM, DiFiore, PP, Deane, JA, Fruman, DA, Thomas, SM, Cantley, LC. The role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement. 2005. Mol. Cell. Biol., 25: 2593-606.
Zhu, X, Hart, R, Kim, JW, Lee, SY, Chang, MS, Cao, YA, Mock, D, Ke, E, Saunders, B, Alexander, A, Grossoehme, J, Lin, KM, Yan, Z, Hsueh, R, Fruman, DA, Subramaniam, S, Sternweis, P, Simon, MI Choi, S. Analysis of the major patterns of B cell gene expression changes in response to short-term stimulation with 33 single ligands. 2004. J. Immunol., 173: 7141–7149.
Donahue, AC, Hess, KL, Ng, KL, Fruman, DA. Altered splenic B cell subset development in mice lacking phosphoinositide 3-kinase p85alpha. 2004. Int. Immunol., 16: 1789-98.
Hess, KL, Donahue, AC, Ng, KL, Moore, TI, Oak, J, Fruman, DA. The p85alpha isoform of phosphoinositide 3-kinase is essential for a subset of B cell receptor-initiated signaling responses. 2004. Eur. J. Immunol., 34: 2968-76.
Deane, JA, Trifilo, MJ, Yballe, CM, Choi, S, Lane, TE, Fruman, DA. Enhanced T cell proliferation in mice lacking the p85b subunit of phosphoinositide 3-kinase. 2004. J. Immunol., 172: 6615-25.
Yusuf, I, Zhu, X, Kharas, MG, Chen, J, Fruman, DA. Optimal B cell proliferation requires phosphoinositide 3-kinase-dependent inactivation of FOXO transcription factors. 2004. Blood, 104: 784-7.
Kharas, MG, Deane, JA, Wong, S, O’Bosky, KR, Rosenberg, N, Witte, ON, Fruman, DA. Phosphoinositide 3-kinase is essential for Abl oncogene mediated transformation of B lineage cells. 2004. Blood, 103: 4268-75.
Fruman, DA. PI3K and its targets in B cell and T cell signaling. 2004. Curr Opin. Immunol., 16: 314-20.
Donahue, AC, Fruman, DA. PI3K signaling controls cell fate at many points in B lymphocyte development and activation. 2004. Semin. Cell Dev. Biol., 15: 183-97.
Deane, JD, Fruman, DA. Phosphoinositide 3-kinase: diverse roles in immune cell activation. 2004. Annu. Rev. Immunol., 22: 563-98.
Fruman, DA. Towards and understanding of isoform specificity in phosphoinositide 3-kinase signaling in lymphocytes. 2004. Biochem. Soc. Trans. 32: 315-9.
Donahue, AC, Fruman, DA. Proliferation and survival of activated B cells requires sustained antigen receptor signaling and phosphoinositide 3-kinase activation. 2003. J. Immunol. 170: 5851-60.
Yusuf, I, Fruman, DA. Regulation of quiescence in lymphocytes. 2003. Trends Immunol., 24:380-6.
Fruman, DA, Ferl, GZ, An, SS, Donahue, AC, Satterthwaite, AB, Witte, ON. Phosphoinositide 3-kinase and Bruton’s tyrosine kinase regulate overlapping sets of genes in B
lymphocytes. (2002) Proc. Natl. Acad. Sci. USA 99: 359-64.
lymphocytes. (2002) Proc. Natl. Acad. Sci. USA 99: 359-64.
Fruman, DA, Cantley, LC. Phosphoinositide 3-kinase in immunological systems. (2002) Semin. Immunol., 14: 7-18.
Mauvais-Jarvis, F, Ueki, K, Fruman, DA, Hirschman, MF, Sakamoto, K, Goodyear, LJ, Iannacone, M, Accili, D, Cantley, LC, Kahn, CR. Reduced expression of the murine p85a subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. 2002. J. Clin. Invest. 109: 141-9.
Fruman, DA, Satterthwaite, AB, Witte, ON. Xid-like phenotypes: a B cell signalosome takes shape. (2000) Immunity 13: 1-3.
Fruman, DA, Mauvais-Jarvis, F, Pollard, DA, Brazil, D, Bronson, RT, Kahn, CR, Cantley, LC. Hypoglycemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85alpha. (2000) Nature Genetics 26: 379-82.
Fruman, DA, Rameh, LE, Cantley, LC. Phosphoinositide binding domains: Embracing 3-phosphate. (1999) Cell 97: 817-20.
Fruman, DA, Snapper, SB, Yballe, CM, Yu, JY, Davidson, L, Alt, FW, Cantley, LC. Impaired B cell development and function in the absence of phosphoinositide 3-kinase p85a. (1999) Science 283: 393-7
Professional Societies
American Association for the Advancement of Science (AAAS)
American Association for Cancer Research
Faculty of 1000, Biology
American Society of Hematology
Other Experience
Visiting Professor
Cochin Institute, Paris, France 2006—2007
Cochin Institute, Paris, France 2006—2007
Director, Graduate Program in Cellular & Molecular Biosciences
Schools of Biological Sciences and Medicine 2011—2015
Schools of Biological Sciences and Medicine 2011—2015
Director
UCI Master's in Biotechnology Management Program 2020—2023
UCI Master's in Biotechnology Management Program 2020—2023
Graduate Programs
Cellular and Molecular Biosciences
Research Centers
Center for Immunology
Cancer Research Institute
Link to this profile
https://faculty.uci.edu/profile/?facultyId=4541
https://faculty.uci.edu/profile/?facultyId=4541
Last updated
09/12/2024
09/12/2024