Mathieu Morlighem

picture of Mathieu  Morlighem

Associate Professor, Earth System Science
School of Physical Sciences

Ph.D., Ecole Centrale Paris, 2011, Mechanical Engineering
M.Engr., Ecole Centrale Paris, 2008, Mechanical and Aerospace Engineering
M.Engr., Ecole Centrale Paris, 2008, Structural Dynamics and Coupled Systems
B.S., University of Paris, Orsay, 2006, Fundamental Physics

Phone: (949) 824-1353
Email: mathieu.morlighem@uci.edu

University of California, Irvine
3218 Croul Hall
Mail Code: 3100
Irvine, CA 92697
Research Interests
Cryosphere, climate change, ice sheet modeling, data assimilation, finite element method, high performance computing
URLs
Academic Distinctions
European Geosciences Union Award: 2018 Arne Richter Award for Outstanding Early Career Scientists
International Association of Cryospheric Sciences (IACS) 2015 Early Career Scientist Prize
NASA Cryospheric Sciences Most Valuable Player for 2014
NASA Group Achievement Award, Ice Sheet System Model, 2011
Research Abstract
I am interested in numerical modeling in general, and ice sheet modeling in particular. My research focuses on the use of finite-elements and PDE-constrained optimization applied to ice sheet system. I am interested in understanding the interactions of ice and climate by combining state-of-the-art numerical modeling with remote sensing and in situ data. In particular, I am interested in determining how the ice sheet, ice caps and mountain glaciers will respond to climate change in the coming century. How much the ice sheets will contribute to global sea level has become one of today's most urgent questions in understanding the implications of global climate change. The Intergovernmental Panel on Climate Change (IPCC) has identified the contribution of the ice sheets as a key uncertainty in sea level rise projections. Numerical modeling is the only effective way of addressing this problem, and I have been working on several aspects of this topic, such as the development and implementation of higher-order models, anisotropic mesh refinement, inverse modeling, and more recently bed topography reconstruction based on mass conservation.
Publications
75. J. K. Cuzzone, M. Morlighem, E. Larour, N. Schlegel, and H. Seroussi. Implementation of higher-order vertical finite elements in ISSM v4.13. for improved ice sheet flow modeling over paleoclimate timescales. Geosci. Model Dev., 11(5):1683–1694, 2018.

74. K. Haubner, J. E. Box, N. J. Schlegel, E. Y. Larour, M. Morlighem, A. M. Solgaard, K. K. Kjellerup, S. H. Larsen, and K. H. Kjær. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849–2012 by forcing prescribed terminus positions in ISSM. The Cryosphere, 12(4):1511–1522, 2018.

73. H. Jeofry, N. Ross, H. F. J. Corr, J. Li, M. Morlighem, P. Gogineni, and M. J. Siegert. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet. Earth Syst. Sci. Data, 10(2):711–725, 2018.

72. Neil Ross, Andrew J. Sole, Stephen J. Livingstone, Adam Igneczi, and Mathieu Morlighem. Near-margin ice thickness from a portable radar: implications for subglacial water routing, Leverett Glacier, Greenland. Arctic Ant. Alp. Res., 50(1), 2018.

71. C. Dow, M. Werder, G. Babonis, S. Nowicki, R. Walker, B. Csatho, M. Morlighem, Dow C. F., Werder M. A., Babonis G., Nowicki S., Walker R. T., Csatho B., and Morlighem M.. Dynamics of active subglacial lakes in Recovery Ice Stream. J. Geophys. Res., 123(4):837–850, 2018.

70. R. Millan, E. Rignot, J. Mouginot, M. Wood, A. A. Bjørk, and M. Morlighem. Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data. Geophys. Res. Lett., 45(6):2688–2696, MAR 28 2018.

69. F. S. Graham, M. Morlighem, R. C. Warner, and A. Treverrow. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models. The Cryosphere, 12(3):1047–1067, 2018.

68. H. Goelzer, S. Nowicki, T. Edwards, M. Beckley, A. Abe-Ouchi, A. Aschwanden, R. Calov, O. Gagliardini, F. Gillet-Chaulet, N. R. Golledge, J. Gregory, R. Greve, A. Humbert, P. Huybrecht, J. H. Kennedy, E. Larour, W. H. Lipscomb, S. Leclec’h, V. Lee, M. Morlighem, F. Pattyn, A. J. Payne, C. Rodehacke, M. Ruckamp, F. Saito, N. Schlegel, H. Seroussi, A. Shepherd, S. Sun, R. van de Wal, and F. A. Ziemen. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. The Cryosphere, 12(4):1433–1460, 2018.

67. L. Hascoët and M. Morlighem. Source-to-source adjoint algorithmic differentiation of an ice sheet model written in C. Optim. Methods Softw., pages 1–15, 2017.

66. Y. Choi, M. Morlighem, E. Rignot, J. Mouginot, and M. Wood. Modeling the response of Nioghalvfjerdsfjorden and Zachariae isstrøm glaciers, Greenland, to ocean forcing over the next century. Geophys. Res. Lett., 44(21):11,071–11,079, 2017.

65. Irina Overeem, Ben Hudson, James Syvitski, Andreas B. Mikkelsen, Bent Hasholt, Michiel Van den Broeke, Brice Noël, and Mathieu Morlighem. Greenland Ice Sheet Erosion Produces Large Sediment Flux to Global Ocean. Nat. Geosc., 10(11):859–863, November 2017.

64. M. Morlighem, C. N. Williams, E. Rignot, L. An, J. E. Arndt, J. L. Bamber, G. Catania, N. Chauché, J. A. Dowdeswell, B. Dorschel, I. Fenty, K. Hogan, I. Howat, A. Hubbard, M. Jakobsson, T. M. Jordan, K. K. Kjeldsen, R. Millan, L. Mayer, J. Mouginot, B. P. Y. Noël, C. O’Cofaigh, S. Palmer, S. Rysgaard, H. Seroussi, M. J. Siegert, P. Slabon, F. Straneo, M. R. van den Broeke, W. Weinrebe, M. Wood, and K. B. Zinglersen. Bedmachine v3: Complete bed topography and ocean bathymetry mapping of greenland from multi-beam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21):11,051–11,061, 2017. 2017GL074954. [link]

63. Pietro Milillo, Eric Rignot, Jeremie Mouginot, Bernd Scheuchl, Mathieu Morlighem, Xin Li, and Jacqueline Salzer. On the short-term grounding zone dynamics of Pine Island glacier, West Antarctica observed with COSMO-SkyMed interferometric data. Geophys. Res. Lett., 2017.

62. J. Bondzio, M. Morlighem, H. Seroussi, T. Kleiner, M. Ruckamp, J. Mouginot, T. Moon, E. Larour, and A. Humbert. The mechanisms behind Jakobshavn Isbræ’s acceleration and mass loss: A 3-D thermomechanical model study. Geophys. Res. Lett., 44, 2017.

61. H. Yu, E. Rignot, M. Morlighem, and H. Seroussi. Iceberg calving of Thwaites Glacier, West Antarctica: Full-Stokes modeling combined with linear elastic fracture mechanics. Cryosphere, 11(3):1283–1296, 2017.

60. H. Seroussi, Y. Nakayama, E. Larour, D. Menemenlis, M. Morlighem, E. Rignot, and A. Khazendar. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys. Res. Lett., 44, 2017. 2017GL072910.

59. L. An, E. Rignot, S. Elieff, M. Morlighem, R. Millan, J. Mouginot, D. M. Holland, D. Holland, and J. Paden. Bed elevation of Jakobshavn isbræ, West Greenland, from high-resolution airborne gravity and other data. Geophys. Res. Lett., 44(8):3728–3736, 2017. 2017GL073245.

58. D. Farinotti, D. Brinkerhoff, G. K. C. Clarke, J. J. Fürst, H. Frey, P. Gantayat, F. Gillet-Chaulet, C. Girard, M. Huss, P. W. Leclercq, A. Linsbauer, H. Machguth, C. Martin, F. Maussion, M. Morlighem, C. Mosbeux, A. Pandit, A. Portmann, A. Rabatel, R. Ramsankaran, T. J. Reerink, O. Sanchez, P. A. Stentoft, S. Singh Kumari, W. J. J. van Pelt, B. Anderson, T. Benham, D. Binder, J. A. Dowdeswell, A. Fischer, K. Helfricht, S. Kutuzov, I. Lavrentiev, R. McNabb, G. H. Gudmundsson, H. Li, and L. M. Andreassen. How accurate are estimates of glacier ice thickness? results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere, 11(2):949–970, 2017.

57. Denis Felikson, Timothy C. Bartholomaus, Ginny A. Catania, Niels J. Korsgaard, Kurt H. Kjaer, Mathieu Morlighem, Brice Noel, Michiel van den Broeke, Leigh A. Stearns, Emily L. Shroyer, David A. Sutherland, and Jonathan D. Nash. Inland thinning on the Greenland Ice Sheet controlled by outlet glacier geometry. Nat. Geosci., 10(5):366–371, MAY 2017.

56. E. Larour, D. Cheng, G. Perez, J. Quinn, M. Morlighem, B. Duong, L. Nguyen, K. Petrie, S. Harounian, D. Halkides, and W. Hayes. A JavaScript API for the Ice Sheet System Model: towards on online interactive model for the Cryosphere Community. Geosci. Model Dev., 10(12):4393–4403, 2017.

55. H. Åkesson, K. H. Nisancioglu, R. H. Giesen, and M. Morlighem. Simulating the evolution of Hardangerjøkulen ice cap in southern Norway since the mid-Holocene and its sensitivity to climate change. Cryosphere, 11(1):281–302, 2017.

54. F. Habbal, E. Larour, M. Morlighem, H. Seroussi, C. P. Borstad, and E. Rignot. Optimal numerical solvers for transient simulations of ice flow using the Ice Sheet System Model (ISSM versions 4.2.5 and 4.11). Geosci. Model Dev., 10(1):155–168, 2017.

53. R. Millan, E. Rignot, V. Bernier, M. Morlighem, and P. Dutrieux. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data. Geophys. Res. Lett., 44, 2017.

52. Ellyn M. Endelin, Gordon S. Hamilton, Shad O’Neel, Timothy C. Bartholomaus, Mathieu Morlighem, and John W. Holt. An empirical approach for estimating stress-coupling lengths for marine-terminating glaciers. Front. Earth Sci., 4:104, DEC 2 2016.

51. J. Schaffer, R. Timmermann, J. E. Arndt, S. S. Kristensen, C. Mayer, M. Morlighem, and D. Steinhage. A global, high- resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data, 8(2):543–557, 2016.

50. E. Larour, J. Utke, A. Bovin, M. Morlighem, and G. Perez. An approach to Computing Discrete Adjoints for MPI- Parallelized Models Applied to the ice Sheet System Model 4.11. Geosci. Model Dev., 9(11):3907–3918, 2016.

49. M. Morlighem, E. Rignot, and J. Willis. Improving bed topography mapping of Greenland glaciers using NASA’s Oceans Melting Greenland (OMG) data. Oceanography, 29, December 2016.

48. B. de Fleurian, M. Morlighem, H. Seroussi, E. Rignot, M.R. van den Broeke, P.K. Munneke, J. Mouginot, P.C.J.P. Smeets, and A.J. Tedstone. A modeling study of the effect of runoff variability on the effective pressure beneath the Russell region, West Greenland. J. Geophys. Res., 2016. 2016JF003842.

47. Sandra L. Cronauer, Jason P. Briner, Samuel E. Kelley, Susan R. H. Zimmerman, and Mathieu Morlighem. 10Be dating reveals early-middle Holocene age of the Drygalski Moraines in central West Greenland. Quaternary Sci. Rev., 147(SI):59–68, SEP 1 2016.

46. Joseph A. MacGregor, Mark A. Fahnestock, Ginny A. Catania, Andy Aschwanden, Gary D. Clow, William T. Colgan, S. Prasad Gogineni, Mathieu Morlighem, Sophie M. J. Nowicki, John D. Paden, Stephen F. Price, and Helene Seroussi. A synthesis of the basal thermal state of the Greenland Ice Sheet. J. Geophys. Res., 121(7):1328–1350, JUL 2016. 2015JF003803.

45. B. Scheuchl, J. Mouginot, E. Rignot, M. Morlighem, and A. Khazendar. Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data. Geophys. Res. Lett., 2016. 2016GL069287.

44. E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, and B. de Fleurian. Modeling of ocean-induced ice melt rates of five West Greenland glaciers over the past two decades. Geophys. Res. Lett., 43(12):6374–6382, JUN 28 2016. 2016GL068784.

43. P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. neXtSIM: a new Lagrangian sea ice model. The Cryosphere, 10(3):1055–1073, 2016.

42. M. Morlighem, J. Bondzio, H. Seroussi, E. Rignot, E. Larour, A. Humbert, and S.-A. Rebuffi. Modeling of Store Gletscher’s calving dynamics, West Greenland, in response to ocean thermal forcing. Geophys. Res. Lett., 43(6):2659–2666, MAR 28 2016.

41. J. H. Bondzio, H. Seroussi, M. Morlighem, T. Kleiner, M. Rückamp, A. Humbert, and E. Larour. Modelling calving front dynamics using a level-set method: application to Jakobshavn isbræ, West Greenland. The Cryosphere, 10(2):497–510, 2016.

40. Chris Borstad, Ala Khazendar, Bernd Scheuchl, Mathieu Morlighem, Eric Larour, and Eric Rignot. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B ice shelf. Geophys. Res. Lett., 43(5):2027–2035, MAR 16 2016.

39. L. A. Stevens, F. Straneo, S. B. Das, A. J. Plueddemann, A. L. Kukulya, and M. Morlighem. Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. The Cryosphere, 10(1):417–432, 2016.

38. Daniel R. Shapero, Ian R. Joughin, Kristin Poinar, Mathieu Morlighem, and Fabien Gillet-Chaulet. Basal resistance for three of the largest Greenland outlet glaciers. J. Geophys. Res., 121(1):168–180, JAN 2016. 2015JF003643.

37. Joseph A. MacGregor, William T. Colgan, Mark A. Fahnestock, Mathieu Morlighem, Ginny A. Catania, John D. Paden, and S. Prasad Gogineni. Holocene deceleration of the Greenland Ice Sheet. Science, 351(6273):590–593, FEB 5 2016.

36. Brent Minchew, Mark Simons, Helgi Bjornsson, Finnur Palsson, Mathieu Morlighem, Helene Seroussi, Eric Larour, and Scott Hensley. Plastic bed beneath Hofsjökull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux. J. Glaciol., 62(231):147–158, 3 2016.

35. J. Mouginot, E. Rignot, B. Scheuchl, I. Fenty, A. Khazendar, M. Morlighem, A. Buzzi, and J. Paden. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science, 350(6266):1357–1361, DEC 11 2015.

34. K. Le Morzadec, L. Tarasov, M. Morlighem, and H. Seroussi. A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle. Geosci. Model Dev., 8(10):3199–3213, 2015.

33. Xin Li, Eric Rignot, Mathieu Morlighem, Jeremie Mouginot, and Bernd Scheuchl. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett., 42(19):8049–8056, OCT 16 2015.

32. Steven Palmer, Malcolm McMillan, and Mathieu Morlighem. Subglacial lake drainage detected beneath the Greenland Ice Sheet. Nat. Communications, 6(8408), OCT 2015.

31. Joseph A. MacGregor, Jilu Li, John D. Paden, Ginny A. Catania, Gary D. Clow, Mark A. Fahnestock, S. Prasad Gogineni, Robert E. Grimm, Mathieu Morlighem, Soumyaroop Nandi, Helene Seroussi, and David E. Stillman. Radar attenuation and temperature within the Greenland Ice Sheet. J. Geophys. Res., 120(6):983–1008, 2015. 2014JF003418.

30. Joseph A. MacGregor, Mark A. Fahnestock, Ginny A. Catania, John D. Paden, S. Prasad Gogineni, S. Keith Young, Susan C. Rybarski, Alexandria N. Mabrey, Benjamin M. Wagman, and Mathieu Morlighem. Radiostratigraphy and age structure of the Greenland Ice Sheet. J. Geophys. Res., 120(2):212–241, FEB 2015.

29. N.-J. Schlegel, E. Larour, H. Seroussi, M. Morlighem, and J. E. Box. Ice discharge uncertainties in Northeast Greenland from boundary conditions and climate forcing of an ice flow model. J. Geophys. Res. - Earth Surface, 120(1):29–54, JAN 2015.

28. A. A. Leeson, A. Shepherd, K. Briggs, I. Howat, X. Fettweis, M. Morlighem, and E. Rignot. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Change, 5(1):51–55, JAN 2015.

27. E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and A. Khazendar. Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet System Model). Cryosphere, 8(6):2335–2351, 2014.

26. H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar. Hydrostatic grounding line parameterization in ice sheet models. Cryosphere, 8(6):2075–2087, Nov. 2014.

25. J. M. Lea, D. W. F. Mair, F. M. Nick, B. R. Rea, D. van As, M. Morlighem, P. W. Nienow, and A. Weidick. Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata sermia, 1859–present. Cryosphere, 8(6):2031–2045, 2014.

24. H. Seroussi, M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. P. Schodlok, and A. Khazendar. Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years. Cryosphere, 8(5):1699–1710, 2014.

23. E. Larour, A. Khazendar, C. Borstad, H. Seroussi, M. Morlighem, and E. Rignot. Representation of sharp rifts and faults mechanics in modeling ice-shelf flow dynamics: application to Brunt/Stancomb-Wills Ice Shelf, Antarctica. J. Geophys. Res., 119(9):1918–1935, SEP 2014.

22. J. M. van Wessem, C. H. Reijmer, M. Morlighem, J. Mouginot, E. Rignot, B. Medley, I. Joughin, B. Wouters, M. A. Depoorter, J. L. Bamber, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, and E. van Meijgaard. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60(222):761–770, 2014.

21. S. Adhikari, E. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki. Future antarctic bed topography and its implications for ice sheet dynamic. Solid Earth, 5(1):569–584, 2014.

20. E. Rignot, J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys. Res. Lett., 41(10):3502–3509, MAY 28 2014.

19. M. Morlighem, E. Rignot, J Mouginot, H. Seroussi, and E. Larour. Deeply incised submarine glacial valleys beneath the Greenland Ice Sheet. Nat. Geosci., 7(6):418–422, JUN 2014.

18. M. Morlighem, E. Rignot, J Mouginot, H. Seroussi, and E. Larour. High-resolution ice thickness mapping in South Greenland. Ann. Glaciol., 55(67):64–70, 2014.

17. James M. Lea, Douglas W. F. Mair, Faezeh M. Nick, Brice R. Rea, Anker Weidick, Kurt H. Kjaer, Mathieu Morlighem, Dirk van As, and J. Edward Schofield. Terminus-driven retreat of a major southwest Greenland tidewater glacier during the early 19th century: insights from glacier reconstructions and numerical modelling. J. Glaciol., 60(220):333–344, 2014.

16. M. Morlighem, E. Rignot, J. Mouginot, X. Wu, H. Seroussi, E. Larour, and J. Paden. High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data. J. Glaciol., 59(218):1015–1023, 2013.

15. H. Seroussi, M. Morlighem, E. Rignot, A. Khazendar, E. Larour, and J. Mouginot. Dependence of century-scale projections of the Greenland ice sheet on its thermal regime. J. Glaciol., 59(218):1024–1034, 2013.

14. M. Morlighem, H. Seroussi, E. Larour, and E. Rignot. Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higher-order model. J. Geophys. Res., 118(3):1746–1753, SEP 2013.

13. S. Nowicki, R.A. Bindschadler, A. Abe-Ouchi, A. Aschwanden, E. Bueler, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, E. Larour, A. Levermann, W.H. Lipscomb, M.A. Martin, M. Morlighem, B.R. Parizek, et al.. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res., 118:1–23, 2013.

12. S. Nowicki, R.A. Bindschadler, A. Abe-Ouchi, A. Aschwanden, E. Bueler, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, E. Larour, A. Levermann, W.H. Lipscomb, M.A. Martin, M. Morlighem, B.R. Parizek, et al.. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res., 118:1–20, 2013.

11. N-J. Schlegel, E Larour, H Seroussi, M. Morlighem, and J. E. Box. Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM. J. Geophys. Res. - Earth Surface, 118:1–14, 2013.

10. R.A. Bindschadler, S. Nowicki, A. Abe-Ouchi, A. Aschwanden, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann, W.H. Lipscomb, M.A. Martin, M. Morlighem, B.R. Parizek, D. Pollard, S.F. Price, et al.. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (the SeaRISE project). J. Glaciol., 59(214):195–224, 2013.

9. F. Pattyn, L. Perichon, L. Durand, G.and Favier, O. Gagliardini, R. C. A. Hindmarsh, T. Zwinger, T. Albrecht, S. Cornford, D. Docquier, J. Fuerst, D. Goldberg, H. Gudmundsson, A. Humbert, M. Hutten, P. Huybrecht, G. Jouvet, T. Kleiner, E. Larour, D. Martin, M. Morlighem, et al.. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59 (215):410–422, 2013.

8. C. P. Borstad, A. Khazendar, E. Larour, M. Morlighem, E. Rignot, M. P. Schodlok, and H. Seroussi. A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law. Geophys. Res. Lett., 39(L18502):1–5, 2012.

7. E. Larour, M. Morlighem, H. Seroussi, J. Schiermeier, and E. Rignot. Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. J. Geophys. Res. - Earth Surface, 117(F04023):1–12, NOV 16 2012.

6. E. Larour, J. Schiermeier, E. Rignot, H. Seroussi, M. Morlighem, and J. Paden. Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA. J. Geophys. Res., 117, F02009:1–16, 2012.

5. E. Larour, H. Seroussi, M. Morlighem, and E. Rignot. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F01022):1–20, Mar 2012.

4. H. Seroussi, H. Ben Dhia, M. Morlighem, E. Rignot, E. Larour, and D. Aubry. Coupling ice flow models of varying order of complexity with the Tiling Method. J. Glaciol., 58 (210):776–786, 2012.

3. M. Morlighem, E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry. A mass conservation approach for mapping glacier ice thickness. Geophys. Res. Lett., 38(L19503):1–6, 2011.

2. H. Seroussi, M. Morlighem, E. Rignot, E. Larour, D. Aubry, H. Ben Dhia, and S. S. Kristensen. Ice flux divergence anomalies on 79north Glacier, Greenland. Geophys. Res. Lett., 38(L09501):1–5, 2011.

1. M. Morlighem, E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and D. Aubry. Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(L14502):1–6, JUL 2010.
Professional Society
American Geophysical Union
Last updated
08/08/2018