Shane Ardo

Assistant Professor, Chemistry
School of Physical Sciences

Joint Appointment, Chemical Engineering & Materials Science
The Henry Samueli School of Engineering

Ph.D., Johns Hopkins University, 2010, Chemistry

M.A., Johns Hopkins University, 2008, Chemistry

M.S., University of Maryland, College Park, 2005, Nutrition

B.S., Towson University, 1999, Mathematics

Phone: (949) 824-3796
Fax: (949) 824-8571

University of California, Irvine
Natural Sciences II Building, Room 2131
     (Main Lab Office: Rowland Hall, Room 596 ((949) 824-1218))
Mail Code: 2025
Irvine, CA 92697

picture of Shane  Ardo

solar, photoelectrochemistry, electrochemistry, photochemistry, photophysics, dye-sensitized, membrane, ion-exchange, flow battery, photoacid, materials, inorganic, physical, engineering, physics
URL The Ardo Group website
Moore Inventor Fellow, Gordon and Betty Moore Foundation, 2016
Beall Innovation Award, Beall Family Foundation, 2016
Poster Award Talk, Gordon Research Conference, Electron Donor–Acceptor Interactions, 2016
Group Safety Award, UCI Department of Chemistry, 2016

Physical Division Postdoctoral Research Award, American Chemical Society, PHYS Division, 2013
Postdoctoral Research Award in Photoelectrochemical H2 Production, Department of Energy, Office of Energy Efficiency and Renewable Energy, 2011–2013
Yale Climate & Energy Institute Postdoctoral Fellowship, Yale University, Climate & Energy Institute, 2010 (declined)

Harry and Cleio Greer Fellowship, Johns Hopkins University, Chemistry Department, 2009–2010
Poster Award Talk, Gordon Research Conference, Electron Donor–Acceptor Interactions, 2010
Poster Award Talk, Molecular Solar Fuels International Conference, 2009
Talk Award, Eaton E. Lattman Graduate Student Community Lecture Series, Johns Hopkins University, 2008
Ernest M. Marks Award, Johns Hopkins University, Chemistry Department, 2005
Appointments DOE–EERE Postdoctoral Research Awardee, California Institute of Technology, Chemistry Department, Prof. Nathan S. Lewis, 2011–2013

Postdoctoral Scholar, California Institute of Technology, Chemistry Department, Prof. Nathan S. Lewis, 2010–2011
The central theme of the Ardo Group's research program is to understand and control reaction mechanisms at interfaces, with the goal of maximizing energy-conversion efficiency for realistic applications, including solar fuels devices, photovoltaics, solar seawater desalination, redox flow batteries, and fuel cells.

Asymmetry is the key characteristic responsible for light-induced charge separation and current rectification; it is present in semiconductors, biological membranes, and molecular donor–chromophore–acceptor complexes. Members of the Ardo Group design and control asymmetry through modeling, synthesis, and engineering of molecule–material structures. The electrochemical, photoelectrochemical, and photophysical properties of hard and soft material interfaces are manipulated via molecular functionalization and electrostatic engineering. New materials and molecules are being investigated, including photoacidic materials, multiple-electron-transfer oxidation catalysts, infrared-absorbing dyes, chemically modified surfaces, and ion-conducting metal–organic frameworks. The results from each study are pertinent to fundamental electrochemistry and charge-transfer, energy-transfer, and ion-transfer phenomena.

Generally, the Ardo Group's research consists of five main project categories:

  • Artificial Light-Driven Ion Pumps: Ionic energy-conversion interfaces and photoinduced ion transfer
  • Sunlight-Driven Charge Accumulation: A paradigm shift for dye-sensitized solar-energy-conversion devices
  • Next-Generation Thin-Film Solar Cells: Leveraging organic dications to combat instability
  • Solar-Energy Conversion and Storage Systems: New device architectures and chemistries
  • Non-Noble-Metal Electrocatalysis: Locally benign environments and new ion-exchange mechanisms

The Ardo Group is well-suited for students and postdoctoral scholars with various backgrounds and expertise, spanning the disciplines of chemistry, materials science, chemical engineering, physics, electrical engineering, and biology.
Publications Faculty

(40) Fabian, D. M.; Ardo, S.* J. Mater. Chem. A 2016, 4, 6837–6841. Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication.

(39) Xiang, C.; Weber, A. Z.; Ardo, S., Berger, A.; Chen, Y.; Coridan, R.; Fountaine, K. T.; Haussener, S.; Hu, S.; Liu, R.; Lewis, N. S.; Modestino, M. A.; Shaner, M. R.; Singh, M. R.; Stevens, J. C.; Sun, K.; Walczak, K. Angew. Chem. Int. Ed. 2016, 55, 12974-12988. Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices.

(38) Reiter, R. S.; White, W.; Ardo, S.* J. Electrochem. Soc. 2016, 163, H3132–H3134. Electrochemical Characterization of Commercial Bipolar Membranes under Electrolyte Conditions Relevant to Solar Fuels Technologies.

(37) Fabian, D. M.; Hu, S.; Singh, N.; Houle, F. A.; Hisatomi, T.; Domen, K.; Osterloh, F. E.; Ardo, S.* Energy Environ. Sci. 2015, 8, 2825–2850. Particle Suspension Reactors and Materials for Solar-Driven Water Splitting.

(36) Ager III, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Energy Environ. Sci. 2015, 8, 2811–2824. Experimental Demonstrations of Spontaneous, Solar-Driven Photoelectrochemical Water Splitting.

(35) Gaieck, W. and Ardo, S.* Rev. Adv. Sci. Eng. 2014, 3, 277–287. Challenges and Opportunities for Ion-Exchange Membranes in Solar Fuels Devices.


(34) Velazquez, J. M.; John, J.; Esposito, D. V.; Pieterick, A.; Pala, R. A.; Sun, G.; Zhou, X.; Huang, Z.; Ardo, S.; Soriaga, M. P.; Brunschwig, B. S.; Lewis, N. S. Energy Environ. Sci. 2016, 9, 164–175. A Scanning Probe Investigation of the Role of Surface Motifs in the Behavior of p-WSe2 Photocathodes.

(33) Ardo, S.; Park, S. H.; Warren, E. L.; Lewis, N. S. Energy Environ. Sci. 2015, 8, 1484–1492. Unassisted solar-driven photoelectrosynthetic HI splitting using membrane-embedded Si microwire arrays.

(32) Bruce, J. P.; Asgari, S.; Ardo, S.; Lewis, N. S.; Oliver, D. R.; Freund, M. S. J. Phys. Chem. C 2014, 118, 27742–27748. Measurement of the Electrical Resistance of n-Type Si Microwire/p-Type Conducting Polymer Junctions for Use in Artificial Photosynthesis.

(31) McKone, J. R.; Ardo, S.; Blakemore, J. D.; Bracher, P. J.; Dempsey, J. L.; Darnton, T. V.; Hansen, M. C.; Harman, W. H.; Rose, M. J.; Walter, M. G.; Dasgupta, S.; Winkler, J. R.; Gray, H. B. Rev. Adv. Sci. Eng. 2014, 3, 288–303. The Solar Army: A Case Study in Outreach Based on Solar Photoelectrochemistry.

(30) McDonald, M. B.; Ardo, S.; Lewis, N. S.; Freund, M. S. ChemSusChem 2014, 7, 3021–3027. Use of Bipolar Membranes for Maintaining Steady-State pH Gradients in Membrane-Supported, Solar-Driven Water Splitting.

(29) Ardo, S.; Lewis, N. S. Patent, California Institute of Technology, 2014, 14/020,151 (Provisional patent, 2012, 61/697,422), Publication number: US20140061057 A1. Light-Driven Hydroiodic Acid Splitting from Semiconductive Fuel Generator.

(28) Shaner, M. R.; Fountaine, K. T.; Ardo, S.; Coridan, R. H.; Atwater, H. A.; Lewis, N. S. Energy Environ. Sci. 2014, 7, 779–790. Photoelectrochemistry of Core–Shell Tandem Junction n-p+-Si/n-WO3 Microwire Array Photoelectrodes.

(27) Ardo, S.; Shaner, M.; Coridan, R.; Strandwitz, N.; McKone, J.; Fountaine, Katherine; Atwater, H. A.; Lewis, N. S. Patent, California Institute of Technology, 2013, 13/856,353 (Provisional patents, 2012, 61/619,661 and 2012, 61/621,819), Publication number: US20130269761 A1. Semiconductor Structures for Fuel Generation.

(26) Nielander, A. C.; Bierman, M. J.; Petrone, N.; Strandwitz, N. C.; Ardo, S.; Yang, F.; Hone, J.; Lewis, N. S. J. Am. Chem. Soc. 2013, 135, 17246–17249. Photoelectrochemical Behavior of n-type Si(111) Electrodes Coated With a Single Layer of Graphene.

(25) Ardo, S.; Lewis, N. S. Patent, California Institute of Technology, 2013, 13/539,335 (Provisional patent, 2011, 61/503,083), Publication number: US20130174896 A1. A Tandem Solar Cell using a Silicon Microwire Array and Amorphous Silicon Photovoltaic Layer.

(24) Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F. Energy Environ. Sci. 2013, 6, 1983–2000. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry.

(23) Haussener, S.; Xiang, C.; Spurgeon, J.; Ardo, S.; Lewis, N. S.; Weber, A. Z. Energy Environ. Sci. 2012, 5, 9922–9935. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems.

(22) Yahyaie, I.; Ardo, S.; Oliver, D. R.; Thomson, D. J.; Freund, M. S.; Lewis, N. S. Energy Environ. Sci. 2012, 5, 9789–9794. Comparison between the electrical junction properties of H-terminated and methyl-terminated individual Si microwire/polymer assemblies for photoelectrochemical fuel production.


(21) O’Donnell, R. M.; Ardo, S.; Meyer, G. J. J. Phys. Chem. Lett. 2013, 4, 2817–2821. Charge-Screening Kinetics at Sensitized TiO2 Interfaces.

(20) Achey, D.; Ardo, S.; Meyer, G. J. Inorg. Chem. 2012, 51, 9865–9872. Increase in the Coordination Number of a Cobalt Porphyrin after Photo-Induced Interfacial Electron Transfer into Nanocrystalline TiO2.

(19) Khnayzer, R. S.; Thompson, L. B.; Zamkov, M.; Ardo, S.; Meyer, G. J.; Murphy, C. J.; Castellano, F. N. J. Phys. Chem. C 2012, 116, 1429–1438. Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors.

(18) Rowley, J. G.; Ardo, S.; Sun, Y.; Castellano, F. N.; Meyer, G. J. J. Phys. Chem. C 2011, 115, 20316–20325. Charge Recombination to Oxidized Iodide in Dye-Sensitized Solar Cells.

(17) Ardo, S.; Achey, D.; Morris, A. J.; Abrahamsson, M.; Meyer, G. J. J. Am. Chem. Soc. 2011, 133, 16572–16580. Non-Nernstian Two-Electron Transfer Photocatalysis at Metalloporphyrin–TiO2 Interfaces.

(16) Ardo, S.; Meyer, G. J. J. Am. Chem. Soc. 2011, 133, 15384–15396. Characterization of Photoinduced Self-Exchange Reactions at Molecule–Semiconductor Interfaces by Transient Polarization Spectroscopy: Lateral Intermolecular Energy and Hole Transfer across Sensitized TiO2 Thin Films.

(15) Achey, D.; Ardo, S.; Xia, H.–L.; Siegler, M. A.; Meyer, G. J. J. Phys. Chem. Lett. 2011, 2, 305–308. Sensitization of TiO2 by the MLCT Excited State of CoI Coordination Compounds.

(14) Ardo, S.; Meyer, G. J. Book Chapter in Encyclopedia of Inorganic Chemistry, Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, 2nd edition, John Wiley & Sons, Ltd., Crabtree, Robert H. (ed.), 2010, ISBN: 978-0-470-74986-9, 265-300. Recent Advances in Photo-Initiated Electron Transfer at the Interface of Anatase TiO2 Nanocrystallites and Transition-Metal Polypyridyl Compounds.

(13) Rowley, J. G.; Farnum, B. H.; Ardo, S.; Meyer, G. J. J. Phys. Chem. Lett. 2010, 1, 3132–3140. Iodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking I–I Bonds for Solar Energy Conversion.

(12) Ardo, S. Ph.D. Dissertation, 2010, ISBN: 9781124423371, Johns Hopkins University. Photoinduced Charge, Ion & Energy Transfer Processes at Transition-Metal Coordination Compounds Anchored to Mesoporous, Nanocrystalline Metal-Oxide Thin Films.

(11) Heuer, W. B.; Xia, H.–L.; Abrahamsson, M.; Zhou, Z.; Ardo, S.; Narducci Sarjeant, A. A.; Meyer, G. J. Inorg. Chem. 2010, 49, 7726–7734. Reaction of RuII Diazafluorenone Compound with Nanocrystalline TiO2 Thin Film.

(10) Xia, H.–L.; Liu, F.; Ardo, S.; Narducci Sarjeant, A. A.; Meyer, G. J. J. Photochem. Photobiol. A Chem. 2010, 216, 94–103. Photoinduced Electron Transfer from Ru Am(m)ine Compounds with Low-Lying Ligand Field Excited States to Nanocrystalline TiO2.

(9) Ardo, S.; Meyer, G. J. J. Am. Chem. Soc. 2010, 132, 9283–9285. Direct Observation of Photodriven Intermolecular Hole Transfer across TiO2 Nanocrystallites: Lateral Self-Exchange Reactions and Catalyst Oxidation.

(8) Ardo, S.; Sun, Y.; Castellano, F. N.; Meyer, G. J. J. Phys. Chem. B 2010, 114, 14596–14604. Excited-State Electron Transfer from Ruthenium–Polypyridyl Compounds to Anatase TiO2 Nanocrystallites: Evidence for a Stark Effect.

(7) Abrahamsson, M.; Johansson, P. G.; Ardo, S.; Kopecky, A.; Galoppini, E.; Meyer, G. J. J. Phys. Chem. Lett. 2010, 1, 1725–1728. Decreased Interfacial Charge Recombination Rate Constants with N3-Type Sensitizers.

(6) Ardo, S.; Sun, Y.; Staniszewski, A.; Castellano, F. N.; Meyer, G. J. J. Am. Chem. Soc. 2010, 132, 6696–6709. Stark Effects after Excited-State Interfacial Electron Transfer at Sensitized TiO2 Nanocrystallites.

(5) Xia, H.–L.; Ardo, S.; Narducci Sarjeant, A. A.; Huang, S.; Meyer, G. J. Langmuir 2009, 25, 13641–13652. Photodriven Spin Change of Fe(II) Benzimidazole Compounds at Nanocrystalline TiO2 Interfaces.

(4) Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115–164. Photodriven Heterogeneous Charge Transfer with Transition-Metal Compounds Anchored to TiO2 Semiconductor Surfaces.

(3) Staniszewski, A.; Ardo, S.; Sun, Y.; Castellano, F. N.; Meyer, G. J. J. Am. Chem. Soc. 2008, 130, 11586–11587. Slow Cation Transfer Follows Sensitizer Regeneration at Anatase TiO2 Interfaces.


(2) Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. LWT – Food Sci. Technol. 2007, 40, 552–557. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado.

(1) Ardo, S. Master’s Thesis, 2005, ISBN: 9780542257957, University of Maryland, College Park. Characterization of Olive Oils Commercially Available in the United States.
Grants U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, Incubator Grant (2015 - 2017)
U.S. National Science Foundation, Division of Chemistry, Chemical Catalysis Program (2016 - 2019)
Beall Family Foundation, Beall Innovation Award (2016 - 2017)
Gordon and Betty Moore Foundation, Moore Inventor Fellowship (2016 - 2019)
American Chemical Society (ACS)
U.S. DOE Photoelectrochemical Working Group
The Electrochemical Society (ECS)
Materials Research Society (MRS)
UCI Chemical and Materials Physics (ChaMP) Graduate Program
UCI Center for Solar Energy
UC Innovative Materials for Energy Working Group
American Institute of Chemical Engineers (AIChE)
Other Experience Software & Quality Assurance Engineer
Shimadzu Scientific Instruments, Inc. 1993—1996

Information Technology Consultant
Xpedior / Metamor, Inc. 1999—2000

Software Engineer
Physiome Sciences, Inc. 2001—2001

Mathematics & Computer Science Instructor
Community College of Baltimore County 2000—2001

Mathematics & Computer Programming Teacher
Baltimore City College High School 2001—2003

Link to this profile
Last updated 01/20/2017