EmilyD. Grossman

Professor, Cognitive Sciences
School of Social Sciences

Ph.D., Vanderbilt University, 2002, Psychology
B.A., Miami University, 1997, Psychology
B.A., Miami University, 1997, Mathematics and Statistics

Phone: (949) 824-1530
Fax: (949) 824-2307
Email: grossman@uci.edu

University of California, Irvine
SBSG 2558
Mail Code: 5100
Irvine, CA 92697
Research Interests
neural basis of visual perception, biological motion perception
Grossman, E.D., Jardine, N.A. & Pyles, J.A. (2010) fMRI-adaptation reveals invariant coding for biological motion on the human STS. Frontiers in Human Neuroscience, 4(15), p. 1-18. DOI: 10.3389/neuro.09.015.2010.
Garcia, J.O. & Grossman, E.D. (2009) Motion opponency and transparency in the human middle temporal area (hMT). European Journal of Neuroscience, 30(6), 1172-1182.
Pyles, J.A. & Grossman, E.D. (2009) Neural adaptation for novel objects during dynamic articulation. Neuropsychologia, 47(5), 1261-1268.
Chen, Y., Grossman E., Yurgen-Todd, D., Bidwell, C. Gruper, S., Levy, D., Matthysse, S., Nakayama, K., & Holzman, P. (2008) Differential activation patterns in occipital and prefrontal cortices during motion processing: Evidence from normal and schizophrenic brains. Cognitive, Affective and Behavioral Neuroscience, 8(3) 293-303.
Bedney, M., Caramazza, A., Grossman, E., Pascual-Leone, A. & Saxe, R. (2008) Concepts are not “webs of sensation”: Evidence from motion and non-motion words. Journal of Neuroscience, 28(44), 11347-1353.
Garcia, J.O. & Grossman, E.D. (2008) Necessary but not sufficient: Motion perception is necessary for biological motion. Vision Research, 48(9), 1144-1149.

Thurman, S.M. & Grossman, E.D. (2008) Temporal "Bubbles" reveal key features for point-light biological motion perception. Journal of Vision, 8(3), 1-11.

Pyles, J. A., Garcia, J. O., Hoffman, D. D. & Grossman, E. D. (2007) Visual perception and neural correlates of novel “biological motion”. Vision Research, 47(21), 2786-2797.

Grossman, E. D., Battelli, L. & Pascual-Leone, A. (2005) Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45 (22), 2847-2853.

Grossman, E.D., Blake, R & Kim, C-Y. (2004) Learning to see biological motion: Brain activity parallels behavior. Journal of Cognitive Neuroscience, 16(9), 1669-1679.

Grossman, E. & Blake, R. (2002) Brain Areas Active during Visual Perception of Biological Motion. Neuron, 35(6), 1157-1165.

Tadin, D., Lappin, J.S., Blake, R. & Grossman E.D. (2002) What constitutes an efficient reference frame for vision? Nature Neuroscience, 5(10), 1010-1015.

Grossman, E.D. & Blake, R. (2001) Brain activity evoked by inverted and imagined biological motion. Vision Research, 41(10-11), 1475-1482.

Grossman, E.D., Donnelly, M., Price, P., Morgan, V., Pickens, D., Neighbor, G. & Blake, R. (2000) Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12(5), 711-720.

Grossman, E.D. & Blake, R. (1999) Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 9(22), 3721-3727.
2008-2013 “CAREER: Perceptual and Neural Analysis of Biological Motion”, National Science Foundation; Division of Behavioral and Cognitive Sciences.
Professional Societies
Vision Sciences Society
Society for Neuroscience
Other Experience
Postdoctoral Researcher
Harvard University 2002—2004

Research Center
Center for Cognitive Neuroscience
Last updated